

FIBER OPTIC MEMS SWITCH

for specialty fibers or
PolarisationMaintaining Fibers

OVERVIEW

The sercalo sn series are opto-mechanical switches for the most demanding applications in fiber optic sensor systems and instrumentation. The switch is available in $1 \times 1,1 \times 2,2 \times 2$ and 1×4 variants. The switch mechanism is available in either latching or non latching variants and has a very fast response time below 1 ms and below 1.5 dB insertion loss. The single mode switch is available for a number of specialty fibers covering design wavelengths such as 488 nm , $515 \mathrm{~nm}, 633 \mathrm{~nm}, 680 \mathrm{~nm}, 780 \mathrm{~nm}, 830 \mathrm{~nm}, 980 \mathrm{~nm}$ and 1064 nm . The 1×2 and 2×2 variants can also be made with polarisation maintaining PANDA fibers.
The miniature package withstands rugged environments and is well suited for direct mounting on printed circuit boards. The switch is qualified according to Telcordia GR 1221.

FEATURES

- reliable
- specialty fibers
- 1.5 dB insertion loss
- 1 ms response time
- low PDL
- 60 dB crosstalk
- miniature size
- $2 \times 2,2 \times 1,1 \times 1$ variants

APPLICATIONS

- Instrumentation
- Source selection

Contact:

Sercalo microtechnology Itd Landstrasse 151, 9494 Schaan Principality of Liechtenstein
Tel. +423 $2375797 \quad$ Fax. +4232375748 http://www.sercalo.com e-mail: info@sercalo.com

DESCRIPTION

The serealo switches are composed of an optical subsystem and an electrical driver interface. The optical switching function is realised by a silicon MEMS chip. In the latching SL variants a bistable suspension mechanism keeps the last selected state in power off. In the non-latching $S N$ variants the switch returns into the bar state when electrical power is removed.
To operate the switch 5 V and 0 V are applied on the supply pins, which are used by the internal DC-DC converter to supply a high voltage for the actuator control. CMOS or TTL logic levels on the control pins switch the high voltage on the electrostatic actuator. To set the switch state in the latching variant, pin 2 respectively pin 3 are set to logic high (5 V) for 10 ms and the corresponding switch state is selected. At rest pins 3 and 4 should be pulled to 0 V and must not be floating.
In the non-latching variant only pin 2 is used to set the state of the switch. To set the cross state pin 3 must be at logic high. When pin 3 goes to logic low, or at power off, the switch returns into the bar state.

BAR STATE (0 V)

CROSS STATE (5V)

TECHNICAL SPECIFICATIONS

Switch

Wavelength Range
Insertion Loss ${ }^{1}$
Crosstalk
Backreflection
Polarisation Dependent Loss
Polarisation Extinction Ratio ${ }^{2}$
Repeatability ${ }^{3}$
Switching Time
Durability
Package

Voltage	V	4	5	5.25
Power Consumption	mW		5	10
Operation Temperature	${ }^{\circ} \mathrm{C}$	0		70
Storage Temperature	${ }^{\circ} \mathrm{C}$	-40		85
Size $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$	mm		$40 \times 16.5 \times 9.5$	

nm
dB
dB
dB
dB
dB
dB
ms
cycles
V
N
${ }^{\circ} \mathrm{C}$

Unit
${ }_{2}^{1}$ for $1 \times 2,2 \times 2$ switch, fibers=5,6,7 excluding connector loss. Fibers 2,3 and $4=2 d B$ max. For 1×4 switch ILmax $<3.0 d B$
${ }_{3}^{2}$ with Panda fibers for 7 and 9 only..
${ }^{3}$ value for constant temperature and polarisation

Figure 1: Pin layout SN2x2: non-latching

Figure 2: Pin layout SLTS1x2: latching with position monitor. Without monitor, pins 5,6 are omitted.

Figure 3: Pin layout SL1x4: latching. In the non-latching variant pins S4, S5, S6 are omitted. The 1x4 variant is not available with polarisation maintaining panda fibers.

