

OVERVIEW

The sercalo fiber optic switch is a very fast opto-mechanical switch based on the MEMS technology. The component makes an optical connection between an optical port and either one of 32 input or output lines. The highly reliable switching mechanism use integrated micromirrors and features below 20 ms switching time and below 2.0 dB insertion loss. The switch is powered by a 5 V supply voltage. A 5 V TTL or CMOS drive signal is used to control the switching state.
The switching mechanism offers the reliability of a solid state device; it neither wears out nor degrades over time. Even after billions of cycles the switching quality stays constant. The small package withstands rugged environments and is well suited for direct mounting on printed circuit boards.

FAST

FIBER OPTIC
1x32 SWITCH

FEATURES

- reliable
- 2.0 dB insertion loss
- 5 ms response time
- 60 dB crosstalk
- miniature size
- non-latching

APPLICATIONS

- Optical Reconfiguration
- Instrumentation
- Provisioning

ORDERING INFORMATION
SW1x32-9N (smf 28, single mode fiber)
SW1x32-50N (50 um core, graded index)
SW1x32-62N (62.5 um core, graded index)

Ordering Information:

Contact:

Sercalo microtechnology Itd
Landstrasse 151, 9494 Schaan
Principality of Liechtenstein
Tel. +423 2375797 Fax. +423 2375748
www.sercalo.com e-mail:info@sercalo.com

information in this datasheet is believed to be correct but Sercalo reserves the right to change specifications without notice at any time. [90-1141-2]

ELECTRICAL CONNECTION

Optical port selection table

1	2	3	4	5	Port
0	0	0	0	5	1
0	0	0	5	0	2
0	0	0	5	5	3
0	0	0	0	0	4
5	0	5	0	5	5
5	0	5	5	0	6
5	0	5	5	5	7
5	0	5	0	0	8
0	5	5	0	5	9
0	5	5	5	0	10
0	5	5	5	5	11
0	5	5	0	0	12
5	5	0	0	5	13
5	5	0	5	0	14
5	5	0	5	5	15
5	5	0	0	0	16
5	5	5	0	0	17
5	5	5	5	5	18
5	5	5	5	0	19
5	5	5	0	5	20
0	5	0	0	0	21
0	5	0	5	5	22
0	5	0	5	0	23
0	5	0	0	5	24
5	0	0	0	0	25
5	0	0	5	5	26
5	0	0	5	0	27
5	0	0	0	5	28
0	0	5	0	0	29
0	0	5	5	5	30
0	0	5	5	0	31
0	0	5	0	5	32

$$
\begin{aligned}
& 0=0 \mathrm{~V} \text { (TTL or CMOS level) } \\
& 5=5 \mathrm{~V} \text { (TTL or CMOSlevel) } \\
& \mathrm{x}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}
\end{aligned}
$$

