inCrospecet
\/’ technology

Introspect ESP

User Manual

Ordering Information:

800 Village Walk #316
Guilford, CT 06437

Op tiX Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282

www.xsoptix.com
mailto:sales@xsoptix.com

incrospect
_/’ technology

Introspect ESP

User Manual

For Version 3.3

2013-05-04

5 J-’—-\\
InNGrospect
\\-__..-" technology

© 2009-2013 Introspect Technology. All rights reserved.

....................

incrospect EE

technology

Table of Contents

| 5918 {eYe 1 Tei 010 4 NUURUUU SRR RRN 4
Concepts & TerminoloZyccccieeruiieiiiiiieeteeeeeteetee ettt et s st ssre e s re e s st e sneeeas 5
TESP TeSt PrOCESSOT ... e s s e s e s e s e s s s s s e s s s s s s s s s s e s e s s s s s s s sasasasasasassanananans 5
COMPONENLS ... e e e e e e e e e s e e e s e s e e e e e e e s e e e e e e s eaeaeasaaaanananasaaanananaaens 5
TESES ettt ettt e sttt e e s e s b et e e e e e s e e nnaeeaas 6
RESUIES ...ttt ettt ettt ste st s b e e s e s st e e st e e st e s saesssaessaessaesssaessaesnsassenns 6
PN 03] Do T 1) s W 721y 11 o USSR PP 7
WIZATAS 1ttt ettt e st e st e e st e s st e s taessaessaaesasaesssaessaesssaesseessaesennseenns 8
TSt WIIAOW ...eiiieiiieeieeetectect ettt st e st e s et e s te e s ae e s ae e sasaesasaesssaenssessssesnssesenns 11
COMPONENTS LISt ..uiiiiiiiiiieiiiiiiiteiiiiiiteeeesiiteeeeeeirreeeessrreeeesessreesesssssseesssssssseesssssssseesnns 13
(0703111 010) 123 0 Ll 30 40 0153 i (=3 J TR UPPPPRN 15
TSt PrOCEAUIE AT@A....cc..eiiieiiieiiiieeeiiieeeiteeesiee e ettt e esreeessreeessaeesssseessssaesssssassssaesnnns 18
RUNNING @ TESL ...ttt et s et et e e e e e s e smeeesemneene 20
RESUILS Of @ TEST....vieieiiiiiiieieieecteeeee ettt e s e e e s e e e s sabe e e sae e s ssaaessasans 22
AccesSing the TaW data.........eeeeecciiiiiiicieeccccee e e s e e s e aae e e e e 24
Python Commands and the Test Procedureccoocueevieriiiniiiniieniienieeeeeeeeeeeeeen 25
Commenting out SECtions Of COAEcccuiiiriiiiiiiiiicieeeee e e 25
PriNting MESSAZES . eeeeeuriereiiieeiitereteeeette ettt e ettt e ettt e e rte e e sabeeseseeessnseesesseeeesnneesennnes 26
Assigning values t0 Variables..........iicciiiieiiiiiiieecieeeee e e 26
Importing other Python COdeuiiiiiiiiiiiieee e 27
Changing properties of COMPONENLScciieeiiiieiieiiiieeeccireeeeecereeeeerere e e e e eeaeeeeeans 27
LOODINE ettt ettt ettt et e s et e st e e e e e e e nne e e e nte e s nneesenneeas 27
Defining fUNCHIONSccouiiiiiiiieieeeeeee ettt ettt e st e st e s eae e s eaeesneeeas 28
INSETtING AELAYS....ceeiuiieiiieiiieiieete ettt et sat e e st e st e et e s st e s saaessneeeas 28
Waiting Until FEAAYccccveeieeiiiieiieeceeeceeeee ettt ee e e ee e e s saee e s aaeeseaaaeenes 29
RUNNING & SKEll SCIIPL ...uviiiiiiiieiieeccieeeete ettt et ar e e e era e e e ar e e e s 29
Sending email OF tEXTINGccuvviiiiiiiiieeicciiee e e e e rae e e e e are e e e e e aaaeeeas 29
PyLab: SciPy and MatPlotLibcccccevriiiiiniiiinieeiteeeieeceteceeeeesiee e 29
Lower-level access to the IESP hardware............coocoovieeieciiiieiieciieeecceee e 30
Saving & LOAING TESESceevuerriiieiieriiiiteeeteectee ettt ettt e st e st e st e s st e s saeesneeas 31
Structure 0f @ TeSt fOlAETciiiviiiiiiiiieee e eeeeeeeas 31
1070) 101 070) 1 <) 4 LS J00UN RPNt 33
Running Tests from the Command Linec.ccceecueeriiirniiiniiinnienieeeeeeeeeee e 35
Customization/PreferenCes.cocviiiiiiiiiiiieieieeeeee ettt ese e sae e e saae s s saaeesseaeeas 36
TroOUDIESNOOTINGevveiiiieiieeeeeee ettt e e st e e s sbe e e s abe e s aaaaseanes 38
Failure to connect tO IESPooo ittt e e ete e e e e aaae e 38
BERT SYNC faIlUTecoovieeiiieiieeteeteeet ettt ettt st et 38
Contacting CUSTOMET SUPPOTT .eceeeurrieeerrirreeririitreeeeesireeeeessireeeesssseeeessssssseessssssasessssnns 38

....................

incrospect EE

technology

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

List of Figures

Mosaic of software features and results VIEWETS.ccccuvvveeeeeeiiiiiiiineneeeeeeeeeeenn, 4
ADD STATTUP SCTEEIN. ... eeens 7
Wizard SeleCtion SCIEEM.ccccuieieriiieriiieiriteeeite et e eereeesre e e sae e e s eaeesssaeesssneas 8
Introductory screen for the BERT Scan wizard........cccccceeveeevieiniieenieenienneennne. 9
Generated components after stepping through the BERT Scan wizard. 10
Screen capture of main test Window.ccccueeeeiieeeiiiieeeiieeccieeeecee e eevee e 11
Components that are used in your Test.cccccvereeiieieciieeeiieeecieeeeeee e 13
Add Component WINAOW.ccecuieeieiiieieiiieeeieeeeeeeecieeseteeesseeeesereesenaeesnneas 14
Basic BertEngine component properties.ccceecveerereereneeensieeseneeeseneenenne 15
Properties for a RxChannelList component.ccccoeeevvieeieniiieeiccciiieeeens 16
RxChannelList component after the expected pattern has been modified.....17
Test window showing a sophisticated Test and a large Test Procedure area.19
[lustration of the Results tab........coocueeviiiriiiiiiniieceeeee 22
Bert Scan reSult VIEWET.cccuviiiieeiiiieecccitee et eeee e e e 23
Illustration of the mechanism for commenting out sections of code............ 26

inGrospect

technology

Introduction

2013 AWARD WINNER

Introspect’s ultra-capable development environment allows you to
easily and seamlessly develop and verify all your high-speed digital
and mixed-signal algorithms. Designed for users with widely
varying backgrounds and expertise, it offers an extremely intuitive
interface simultaneously with extensible capability. Figure 1 shows
a gallery of features that will be described in this document.

["€ inrospect 57 BerScanViewer berscant |-

i — -

P

Eleh7
s

s (e (]

Estimated BER Eye Center (ps)

Bathtub Plot

ch8 Al = Zoom In
(9] Center Bet Scans

W5 Pattern Viewer - S —— = | B dter Hitogram |
h2 [lch3 Flchs @chs @chs
T T T T T T T ch10 ch11 ch12[Jch13 [Jech14
Ri(ps) Di(ps) TI@le-12
)
"
Spectral Density of Selected Channeis
o Saprmctrmi O ey]

1004

€ Introspect ESP EyeScantiewer: eyeScan]_rund

ch1 h2 ch3 chd C ché

Eye Mask: | firom EyeSoan) -
Eye Width (ps): 62

Eye Height (V). 522
Eye Diagam | BER Pt

Composite Bathtub

Measured DD) (ps)

voltage (miv)

Pattern Bit Position
DD)J Histogram

Time (ps)
Rise/Fall Histograms

5-20-15-10-5 0 5 10 15 20

e »

@ ch?

Eye Diagram - Channel 7

60 45 T
a a0
;: I I phase delay (ps)
B 2 il)
£ £ - - -)
I 40 I 30| r S— =B
= T € Introspect ESP (v 3.2.16) - StratixVAutomationScript_CharBoard ===
=30 T30 File Edit IESP/StratiSKit Wizards Results Help
o o I
E20 £ 15} Params [Log] Resuts]
g g 10 RunProductionChiphumber1
10 I RunProductionChipomber?) 1
I BER XXX X
0 0. 1 anclogCapturel betMeasurement] beftScan] eyeScan eyeScan_un2
=25-20-15-10-5 0 5 10 15 =25-20-15 -
Edge Location (ps) E
—
v =] ESSSES———— o |) i T |
= SN (8N [e§ 8§ L9,
Fch1 @ chz [chd Fchd Fch5 @ che Fch7 Fehd Al Frst] ot e showPattem f -
—— e Eu =] oreomland oo & i o e e L i
: L] -e] - ~ - 1 B
| . - W~ W
‘ < i =
500 T T T T T T | Report -
. productionChipNumber2 rawDd
] i B] A i AR
s | noE R 1 I
wf 1
h
5 Wk 4 ranDateCapture]_fun5 rawData
E
s 1
E‘ I
5 o 1l
200 Notes
00 ¥ H [\
) 4
400
s L L : w';r 1 L
s 0 is 2 2 3 3 w] E] 5 0] TR
time (UI)

Figure 1

Mosaic of software features and results viewers.

incrospect

Gechnology

.......................

Concepts & Terminology

The basic units that you will deal with when using the Introspect
ESP software are

IESP Test Processor
Components

Tests

Results

IESP Test Processor

Components

The “IESP Test Processor” (or just “IESP”) is the combination of
hardware and firmware that actually performs the measurements.
The Introspect ESP software can be easily configured to use
different hardware via the “formFactor” preference setting. Each
IESP will have one or more “sub-parts”, each of which will be
connected to separately. The list of available sub-parts is specified
via the “enabledSubParts” preference. (See the section on
Customization/Preferences.)

A “Component” is a conceptual encapsulation of some IESP
functionality. It has parameters (properties) and actions
(functions). A Component often contains or references other
Components.

Some examples of Components:

Pattern
RxChannelList
TxChannelList
BertEngine
BertScan
Shmoo

The available channels will be formFactor-dependent. For
example, the SV1C hardware has 8 RX and 8 TX channels. These
are referred to in the software (in the RxChannelList and
TxChannelList components) via channel numbers ranging from 1
to 8. For some purposes, the channels are grouped into “banks”
which are referred to via bank numbers.

incrospect

Gechnology

Tests

Results

.......................

A “Test” is a conceptual encapsulation of the parameters and
actions for a particular operation with the IESP. A Test usually
makes use of one or more Components — these are considered as
part of the Test entity. Usually the operation performed by a Test
is a measurement of some sort.

You can create and edit Tests and save and load them from files. It
is not necessary to be connected to the IESP hardware to create or
edit Tests since that is done without any communication with the
hardware.

If the computer is attached to the IESP hardware, a Test can be
run, and the resulting measurement data are attached to the Test
and are considered as part of the Test entity. Re-running a Test
will add the latest measurement data to the Test (in addition to the
data from previous runs).

There is a separate command-line utility “runSvtTest.py” that can
be used to run previously saved Tests without the use of the GUI
(e.g. for use with other 3rd-party applications).

The Test procedure uses the syntax of the Python programming
language when invoking the component methods, but you don’t
need to know anything about Python unless you want more fine-
grained control.

A “Result” is a conceptual encapsulation of data resulting from
running a Test. As mentioned above, the Results from a Test are
attached and considered as part of that Test. You can examine the
data from a Result using the various data viewers provided with
Introspect ESP. For example, the data from a BERT scan can be
viewed as a bathtub plot.

incrospect

technology

.....................

Application Startup

When you launch the Introspect ESP application, the first window
that appears looks like Figure 2.

Introspect ESP

=

inGrospect

Welcome to Introspect ESP

@ Create a new Test via a wizard
") Create a new Test manually

() Open an existing Test folder

() Open most recent Test folder

See section on
“Wizards”

See section on the
“Test Window”

See section on “Saving
and Loading Tests”

Figure 2 App startup screen.

This screen presents you with three options.

Choose the first option if what you are doing is one of the common
operations supported by the available wizards (see the section on

“Wizards”).

If you are doing something more unusual, or more advanced,
choose the option to create a Test manually (see the section on the
“Test Window”).

If you have a Test that you had saved previously that you want to
open (to run it or to modify it), choose the third option (see the
section on “Saving and Loading Tests”).

....................

incrospect HE

technology

Wizards

If you choose to run a wizard at application startup, you will see a
window like in Figure 3.

r‘ Introspect ESP &J

incrospect

Choose the type of Test to create

) Choose a wizard
@ BERT Scan

() Bye Scan -
) Clock Signal

() Pattem Definition
) Shmoo

Specify the data rate you
wantto use for this Test

Project Data Rate (Mbps): 10000

Figure 3 Wizard selection screen.

The following wizards are available at application startup (The
same wizards are also available from the “Wizards” menu in any
Test window.):

e BERT scan
o Sets up measurement of bit error rate while
scanning RX phase delay across a specified range
o Allows you to specify expected bit patterns per
channel
e Eyescan
o Sets up measurement of bit error rate while
scanning RX threshold voltage and phase delay
across specified ranges
o Allows you to specify expected bit patterns per
channel
¢ Clock Signal

incrospect

Gechnology

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

o Sets up clock signals with specified frequencies,
duty-cycles, etc
e Pattern Definition
o Allows you to define an arbitrary bit pattern for
later use
¢ Shmoo
o Allows you to define sophisticated multi-variable
analysis sweeps in a matter of seconds

The “Project Data Rate” text field at the bottom of Figure 3 allows
you to specify the data rate that you want to use for the Test. The
data rate that you specify will be setup via the “globalClockConfig”
component. (See the section on “Components” below.)

These wizards guide you step by step through the choices of key
parameters for the task you have chosen. The wizards embed
knowledge about the available ranges of these parameters and
won’t allow you to choose parameter values that would be
inconsistent. As an example, Figure 4 shows the introductory
stage of the BERT Scan wizard.

€ BERT Scan Wizard -SvlAutomationScript T k. [

introspect

Welcome to the BERT Scan Wizard.

This wizard will help you create a custom BERT scan

Bit Interval

Input Digital Signal

e

Output BER Bathtub

‘-

Bit Error Rate

]
0]
1
1
i
1
(]
1
L]

Left5|de‘| + 4+ ++ + 4 + +_1'Rightside

Phase of Receiver Sampling Point

| _Ned> | | Caneel

Figure 4

Introductory screen for the BERT Scan wizard.

.....................

incrospect EE

technology

The BERT Scan wizard knows what the possible range of RX phase
delays is (for a specified data rate) and won’t allow you to choose
values outside of that range.

The end result of running a wizard is creation of one or more
Components with parameters set for the specified task. If you
started the wizard from the “Wizards” menu in the window for an
existing Test, these components will have been added to that Test,
otherwise a new Test will have been created with these
components. You will see these components (each of which has a
unique name) listed on the left side of the Test window. For
example, Figure 5 shows what the components section of the Test
window might look like after completion of the BERT scan wizard.

After the wizard has completed, you can run the Test (if your
computer is connected to the IESP hardware) by pressing the
“Run” button. See the section “Running a Test” below.

Params | Log I Results |
Components | bertScan1 properties (class: BertScan)
bertEnginel - -
bortSoon] bert Engine 1 =
globalClockCorfig rChannel List xChannel List 1
mChannelList 1 channels]
expectedPattems [PAT_PRBS_5]
startPhase -150.0
endPhase 1500
phaseStep 3125
phaseOffsets [0.0]
onlyDoSetupOnce True
jitterAnalysis True
saveResults True
Th € B E RT scan autoDisplayResults False
wizard has created

the components

“bertEnginel” The properties of the “bertScan1”
“bertScanl” componentare determined by what
“xChannelList1” choices you made in the wizard

Figure 5 Generated components after stepping through the BERT Scan wizard.

10

incrospeckt 7
\ Z UE:hnolagg m

..................

Test Window

The “main” window of the Introspect ESP application is the Test
window — a window that shows the components for a Test, and
any Results from running that Test.

If you choose the option “Create a Test manually” from the initial
window, you will get an “empty” Test window, which looks like

Figure 6.
r ————— Tabs:
L] Int t ESP (v 3.2.28) - Untitled
& Introspect ESP (v 3228) - Unti L aTT—— ___ <Params
File Edit [IESP/SV1 Wizards Toels Results Help 'LO
Params | Log I Results | — g
.
Components | globalClockConfig properties (class: GlobalClockCorfig) RESU |t5 -
| globalClockCortfig dataRate 10000.0
uiWidth 100.0
updateData Rate Dependent Defaults True
system RefClock Source intemal
extemRefClock Freq 250.0
outputClock AFomat LVDS
outputClock AFreg 100.0
outputClock BFomat LVDS
Components outputClock BFreg 100.0
list
Component properties
panel
dataRate
Sets the master operating data rate (Mbps). All channels within the |ESFP operate at the same master data rate. Range:
[Add] ’ Remaove] ’Conﬁg] min 312.5 Mbps, max 11360 Mbps
Test Procedurs |

1 globalClockConfig.setup()
2
Test procedure area

Figure 6 Screen capture of main test window.

11

incrospect

cechnology

vvvvvvvvvvvvvvvvvvvvvvv

There are three tabs in a Test window:

e Params
o where you specify the parameters of the Test you
want to run (via components and their properties)
e Log
o where the log messages and error messages will
appear when you run the Test
e Results
o where the Results of the Test runs will be available
for viewing

There are four regions of note in the “Params” tab of a Test
window:

¢ Components List
o shows a list of the names of the component
instances in the Test
o allows you to add, remove, or rename components
e Component Properties Panel
o shows the properties of the currently selected
component
o allows you to edit those properties
e Test Procedure Area
o shows the Python code that will execute when you
run the Test
o allows you to add extra Python code if desired
e Menus
o provides access to other functionality, e.g. loading
and saving of Tests

An “empty” Test has one component in it — the
“globalClockConfig” which allows you to specify parameters like
the data rate which apply throughout the Test. The “Test
Procedure” area starts off with the command to “setup” the
“globalClockConfig” component.

To configure the Test for your needs, you would:

e decide which components are required
e create those components (using the “Add” button below
the list of components)

e set the properties of each component as desired (using the
Properties panel)

When you use a wizard, the wizard creates the components and
sets their properties according to the information you supplied.

12

incrospect

technology

Components List

Figure 7

.....................

Each component instance has a name (based on the name of its
class) — e.g. the first RxChannelList created in a Test is called
“rxChannelList1”. The names are unique within the context of each
Test. The name of the component instance becomes a Python
variable that is used when referring to that component.

The names of all of the component instances in the Test appear in
the Components list area on the upper left of the Test window.
Figure 7 shows what that might look like in a more complicated
Test:

Components
analogCapture1 mChannelList1
bertEngine ChannelList2
bertEngine2 shmool
bertMeasurement 1 testOptions
bertScan teChannelList 1
dofnalogCapture

doBathtubMeasurement
doBerMeasurement
doEyeDiagramMeasurement
doJiterDecompaosition
doRawDataCapture
doShmoo Test
eyveScanl
globalClockCorfig1

htrnl Init
htrmlReportWiiter
jitterDecomposition1
plotCreatorBasic
rawDataCapture1

€ | i | 3

| Add || Remove | | Confia |

Components that are used in your Test.

When you click on the “Add” button that is below the list of
components, the Add Component dialog appears as shown in
Figure 8.

The available component classes are listed at the left of this dialog.
When you click on one of the names on the left, the description of
that component class appears on the right. (The “Components”
section below gives more details on the available component
classes.) If you click on the “Add Component” button in this
dialog, an instance of the selected component class will be created
and added to the Test.

13

incrospect 7
technology
2013 AWARD WINNER
r ~

Add Component - - el

» |Does 2 a2nzlog capture on the specified channel for the specified bits.

BertEngine

Attributes:
BertMeasurement
rxChannellist — BX Channel List component

BertScan startVoltage — determines the lower threshold woltage limit (mV)

Clock Signal endVoltage — determines the upper threshold voltage limit (mV)

DataFile triggerCn - trigger on "start" or "seguence™?

bitOffaets — determines the location of the first of the bita

DataRecord

EdgeScan targetSequences — sequence of 0's and 1's to determine first of bits

g_ - numBitsDesired — number of bits to be captured

EmailMessage 3 saveResults — is saving of results desired? (True/False)

EyeScan autoDlisplayResults - should results be automatically displayed?

Function Methods:

FunctionWithResults run{) - runs the analog capture

GlobalClockCorfi createGraphicsForLastBun () - create screen captures from last run

obal-lockl.omig readResultFiles () - read data files into results variable

GpibCantraller getLastRunResultFolderPath() - get the path to the most recent run result folder
GpibMultimeter

HtmlReportWhiter

|dentifyPattem

JitterDecompaosition

Jitterlnjection

Loop

PattemSequence

PlotCreator

PlotCreatorBasic

PythonModule o

I Add Component] I Cancel]

Figure 8 Add Component window.

If you decide that you no longer need a certain component
instance, you can remove it by selecting its name in the
Components List area and then clicking the “Remove” button. The
component will be removed from the Test immediately — there is
no confirmation dialog unless that component is referred to in the
Test Procedure or by other components in the Test.

You can rename component instances by clicking on the name in
the Component List area to select it, pausing slightly, then clicking
again on the name to make it editable, and then typing in a new
name.

You can duplicate a component by clicking on its name in the
Component List area and holding down the mouse button and
dragging it to a blank part of the Component List area. (The mouse
cursor will change to show a little + sign while you are dragging it.)

If you have a second Test window open, you can drag a component
from one Test into the Component List area of the second Test and
a copy of the component will be added to the second Test.

14

....................

incrospect EE

technology

Component Properties

To see the properties of a component instance, click on the name
of that component in the Component List area on the left side of
the Test window.

A newly added component will have default values for its
properties. For example, the Properties panel for a newly created
BertEngine component will look like Figure 9.

bertEngine 1 properties (class: BetEngine)

ndChannelList nxChannelList 1

channels [1. 3]

expectedPattems [PAT_K28_5]

countMode bits

le+07

durationinMs

syncEmorThreshold 30
duraticninBits

Mumber of bits for BERT measurements when "countMode” is "bits”. Range: min 32, max 42349672596

Figure 9 Basic BertEngine component properties.

The names of the properties are on the left; their values are on the
right. The area at the bottom of the Properties panel shows a
description of the property and usually indicates the units and
what range of values is valid. Note that you can increase the height
of this description area (via the thin bar just above this area) if it
isn’t large enough to display all of the text.

Some properties (e.g. the ‘countMode’ for a BertEngine) can only
take one of a small set of values (enumerated types) — for these, a
pull-down menu on the right side of the value provides a list of
values to choose from. For these properties, you can cycle through
the possible values by double-clicking on the value in the
Properties panel.

15

incrospect

technology

.....................

Some properties (e.g. the ‘channels’ for an RxChannelList) are list-
valued - i.e. you specify a list of values for these properties. A list
in Python is indicated by a series of values separated by commas
inside square brackets — for example: [1, 2, 3]. In the Introspect
ESP Software, you can omit the square brackets when typing in
these values and the brackets will be automatically added.

Some properties (e.g. the ‘rxChannelList’ for a BertEngine) are
cross-references to other component instances — for these, the
value is the name of the other component instance. A pull-down
menu on the right side provides a list of the component instances
that might be appropriate for such properties. Although not shown
in Figure 9, the default for such properties is blank. You will need
to fill this in with the name of an appropriate component instance
before running the Test.

The Properties panel for a newly created RxChannelList
component will look like the screenshot in Figure 10. The value for
the ‘channels’ property is a list of channel numbers. The default
value is [1] which is a list containing only one channel (channel
#1).

mChannellist 1 properties (class: FxChannelList)

[1.3]

expectedPattems
polarties

comparator Threshald
equalizationDeGain
equalizationControl
nClockMode

channels
list of R¥ channel numbers {e.q. [1,2.3])

Figure 10

[PAT_K28_5]
[narmal]

0.0

[0]

[0
[extracted]

Properties for a RxChannellList component.

16

incrospect

technology

.....................

The value for the ‘expectedPatterns’ property is a list of pattern
component names. The default value is [PAT_K28_5] which is a
list containing only one pattern. PAT_K28_ 5 is one of the built-in
pattern components (see the section “Components” below).

To make this RxChannelList component apply to channels 1 and 3,
you would change the ‘channels’ property to [1, 3] as shown in the
figure.

If the expected pattern for all these channels is PRBS31, you would
change the ‘expectedPatterns’ property to [PAT_PRBS_31]. (If
there are fewer patterns listed in the ‘expectedPatterns’ property
than the number of channels, the last pattern applies to the
remaining channels.)

Note that the “expectedPatterns’ property has a pull-down menu
which allows you to append a pattern name to the end of the list.

After having made these changes, the Properties panel for the
RxChannelList component will look like Figure 11. Note that the
property values that are not the default values are shown in bold.
If you want to set a property back to its default value, just erase the
value entirely (i.e. enter a blank value) and it will be set back to the
default value.

mChannellist1 properties (class: RxChannellist)

channels

[1.3]

[PAT_PRBS_31] [~]

polarties

comparator Threshold
equalizationDcGain
equalizationControl
ClockMode

expectedPaltems

[namal]
0.0

[a

101
[extracted]

Allows you to specify the pattems that are expected to be received on the specified channels. The parameter value is
a list of SwtPattem names (2.g. [PAT_PRBS_7, PAT_D21_5]). i fewer pattems are specified than the number of ch. .

Figure 11 RxChannellList component after the expected pattern has been

modified.

17

incrospect

Gechnology

.......................

There is no need to press Enter after changing a property value —
the change will take effect as soon as keyboard focus leaves that
field. For example, you can change a property value and then
immediately click the “Run” button.

Test Procedure Area

The Test Procedure area (at the bottom of the Test window)
contains the Python code that executes when the Test is run (via
the “Run” button).

Most components have either a “run” method or a “setup” method
(see the “Components” section below) and a call to the appropriate
method is entered automatically into the Test Procedure area (at
the bottom of the Test window) when you add a new component
instance to the Test. But the call to the “run” or “setup” method of
a newly added component is entered at the bottom of the Test
Procedure area and this may often not be what you want. For
example, if you add a TxChannelList component, you might want
that component to become active before you start a BertScan. If
so, you will need to edit the lines in the Test Procedure area to get
things in the right order.

For most Tests, reordering of the calls to the component methods
is all that you will be likely to need to do. But you can insert
arbitrary Python code in the Test Procedure area and this code will
be executed when the Test is run. Read the “Python Commands
and the Test Procedure” section below for full details, but a few
basics about Python are useful to know:

Indentation is significant in Python and so it is best to avoid
having extra spaces at the beginning of lines in the Test Procedure
area.

You can comment-out a line by inserting a ‘#’ character at the
beginning of the line. For example, if you add a ‘#’ at the beginning
of the “bertScani.run()” line so that it looks like:
“#bertScani.run()” (without the quotes), then the BertScan would
not run.

The code in the Test Procedure area is “syntax highlighted” — i.e. it
is coloured according to the Python syntactical constructs being
used. In particular, comments are shown in green.

18

JEST
!nbr‘ospecb >

technology S

2013 AWARD WINNER

ey

You can change the relative size of the Components List area and
the Test Procedure area by resizing them by dragging the thin bars
that are adjacent to these areas in the Test window. For example,
you could make the Test window look like Figure 12 where more
space is dedicated to viewing the Test Procedure.

& Introspect ESP (v 3.2.28) - SvlAutomationScript o 1 5
File Edit IESP/SWV1 Wizards Tools Results Help
Params | Log I Results
Components analogCapture1 properties (class: AnslogCapture)
analogCapture 1 doRawDataCapture Chan ChannelList Ct List1 N
bertEngine1 doShmooTest shmoo ; Is —
berEngine2 eyeScani testOpt channels I
bertMeasurement 1 globalClockCorfig1 +eChan expectedPattems [PAT_PCle_xB_neg] !
bertSeani htmllnit startVoktage -630.0 3
doAnalogCapture htmlIReportWriter1 endVoltage 630.0
doBathtubMeasurement jitterDecomposition 1 triggerOn start [4
doBerMeasurement plotCreatorBasic1 bitOfsets 0]
doEyeDiagramMeasurement rawDataCapture 1
targetS 0101
doditterDecomposition mChannelList 1 =g D‘e:uenc:as ‘[:‘] -
O] m | } | | mChannelList
R Channel List component
[Add][Hemo\rel [Ccnﬁgl
Test Procedure |} doAnalogCapture | doBathtubMeasurement | doBerMeasurement | doEyeDi rement I douitterD 1 I doRawDataCapture | doShmooTest | htrnﬂmt‘
angs:

1 # declare section hsading in html report -

2 htmlReportWriterl.addHeading(2, "Analog Waveform Measurement Results")

3 htmlReportWriterl.addParagraph("In t test, analog waveforms are acguired on all channels in order to ensure time-domain signa |~

1l integrity. The following 15 a gallery of acquired waveforms for all channels.")

4

5 # start measurement

6 #### in this example, we showv hov to pass paramsters from a standard iesp component into Python for further procsessing

7 (voltagesByChannel, calibDelaysByChannel analysesByChannel) = analogCapturel.run()

8

9

10 # get = scresn shot of waveform for report a

S

Figure 12 Test window showing a sophisticated Test and a large Test Procedure
area.

19

incrospect

cechnology

State

vvvvvvvvvvvvvvvvvvvvvvv

Running a Test

You can run a Test by clicking on the “Run” button at the bottom
of the Test window. In order to run a Test, you need to have your
computer connected to the IESP hardware (via USB).

The first thing that happens when you run a Test is that the
Introspect ESP program establishes a software connection to the
command processors on the IESP hardware. This software
connection is maintained after the Test has finished and is reused
for subsequent Test runs. (If you want to disconnect for some
reason, you can do so via the “IESP” menu.)

The Python code from the Test Procedure area is executed, which
configures the IESP hardware with the values you specified in the
components for this Test and runs the measurements specified.
While the Test is running, the status indicator at the bottom left of
the Test window flashes between solid green and hatched green.
The “Run” button changes to a “Stop” button — clicking the “Stop”
button will interrupt the Test run.

Status Indicator

Not Connected
Connected and Idle

Test running in this window

O
o
° <flashing>

Test running in some other window

Note that the status indicator is a software indicator and does not
necessarily correspond to the activity lights on the hardware.

While the Test is running, messages from the components appear
in the Log tab of the Test window. The Test window will switch
automatically to the “Log” tab when you start a Test run so that
you can see these messages. You can switch between the “Params”,
“Log”, and “Results” tabs during a Test run. You won’t be able to
change any of the component properties (of this or any other

20

.....................

incrospect EE

technology

Test), but you can look at previous results in the “Results” tab
while waiting for the Test to finish.

After the Test has finished, the Test window will automatically
switch to the “Results” tab so you can look at the results of the
Test.

21

inGrospect

technology

Results of a Test

..................

The results from a Test are accessible in the “Results” tab of the

Test window. Each time you run a Test, a new Result entry

(named according to the current date and time) appears in the list
on the left side of the “Results” tab. The Results are saved with

your Test so you will have access to previous results when you

open this Test some days later. Figure 13 shows what the “Results”
tab looks like after several runs of a Test that has two calls to

‘bertScani.run()’ in the Test Procedure.

Introspect ESP (v 3.2.28) - SvlAutomationScript 0

File Edit IESP/SV1 Wizards Tools Results Help

| Params Log |
Run_2013-02-23_1150
Run_2013-02-23_1228_35
Run_2013-03-03_1608
Run_2013-03-06_1737
Run_2013-03-06_1740 analogCapture

Run_2013-03-06_1302

| |Run_2013-03.06_1802_55
Run_2013-03-06_1803 H
j | Fun_2013-03-0_1805

Run_2013-03-06_1831
Run_2013-03-06_1832
Run_2013-03-06_1334

Run_2013-04-16_1711

Run_2013-03-06_1741

eyeScan1_un2

Run_2013-04-16_1730 e
X8
Com
eyeSc

List of Run Results

B
8
8

9
s
s

j
i

ponentresults for selected Run.
Double-clickto get Result Viewer

iy By By A

rawDataCapture1_run3 rawDataCapture1_rund rawDataCapture1_run5 rawDataCapture1_runé

rawDataCapture1_run? rawDataCapture1_run8 release_3p2p23 8Gbps

eyeScan1_runb

n2

o) b

m

Motes

Delete Resutt

This is my most recent set of tests...

O

Figure 13 Illustration of the Results tab.

22

incrospect

technology

Selecting a Result in the list on the left shows the component
results from that Test run in the area on the right. Usually there is
one component result from each call to the “run” method of a
component. The figure shows multiple component results from a
Test run that was done at 18:18 on April 26, 2013.

You can rename a Result by clicking on the name in the list to
select it, pausing slightly, then clicking again on the name to make
it editable, and then typing in a new name. You may find it useful
to use names that indicate something about the circumstances of

the Test run.

You can delete Results that you don’t need anymore by selecting
them in the list and then clicking on the “Delete Result” button
that is below the list. There is no confirmation dialog — the result

data is deleted immediately.

If you double-click on one of the component results (e.g.
“bertScan1” in Figure 13), the appropriate result viewer will pop up
(as a separate window). You can keep as many result viewer
windows open at a time as you like — this is often useful for
comparing results. Figure 14 shows what the result viewer for a

BertScan looks like.

-
Introspect ESP BertScanViewer: bertScanl S o
Bathtub Plot | Jtter Histogmml
@l ch1 @ch2 @ch3 @cha @chs @che @ch7 @ens | M| [At | [Zoomi |
Center Bert Scans
chd [Jeri0 [Jch11 [Jch1z [Jen13 [Jehid [1ch15 [Jcn1s [None | [Nea | [ZoomoOut] =
RJ (ps) DJ (ps) TJ&1e-12 Estimated BER Eye Center (ps)
Channel 1 0.6 126 204 <<1.0E-20 -38 -
Channel 2 1.0 124 261 <<1.0E-20 -6.1 =
a | 1 +
Bathtub Plot I
T T T T T T T
B ———— — S Se— — |
"\:\ w 3]
W e
1E-2 |- p v i
(] -
" >
2 |
1E-4 |- iI * 4
[b
II i
» 1E-6 1 % -
w J i
o r Y
1E-8 - 1
1 * Channel 1
| II ¢ Channel2
1E-10 [i « Channeld —
| Channel 4
1E-12 [Channel& |
l Channel &
! Channel 7
1E-14 - * Channel§
1 1 1 1 1 1 1
-200 -150 -100 -50 a 50 100 150 200

Figure 14 Bert Scan result viewer.

23

incrospect

Gechnology

.......................

Each result viewer is different, but there are some commonalities:

e Select which channels you want to view using the
checkboxes at the top. (The checkboxes for channels that
weren’t involved in this component are dimmed
(unavailable).)

e Change the scale of the x or y axis (i.e. zoom in/out) by
clicking the mouse in the axis area (where the numerical
labels are shown) and then dragging (holding down the
mouse button) along the axis.

e Move the graph around by clicking the mouse in the graph
area and then dragging (holding down the mouse button).#

Accessing the raw data

The data from a Test run is saved on the filesystem (in a sub-folder
named according to the current date and time) under the “Results”
sub-folder of the Test folder. Most data is in CSV format and so
you could examine this data in Excel if you wanted to do some
analysis that isn’t provided by the result viewers in Introspect ESP.
Each component saves its data differently, but it is usual to have a
separate file for each channel and to have the channel number as
part of the filename.

An easy way to access the raw data is via the contextual (right-
click) menus that are available over the Results in the list on the
left side and over the component results on the right side. The
“Show Folder” menu item opens the appropriate folder in
Windows Explorer. The “Open CSV Files” menu item opens all the
CSV files of a component result using whatever application is
registered with Windows for the “.csv” suffix. These menu items
are also available in the “Results” menu — they act on whichever
Result is currently selected.

24

incrospect

Gechnology

vvvvvvvvvvvvvvvvvvvvvvv

Python Commands and the Test
Procedure

The “Test Procedure” is the Python code that executes when the
Test is run. Most components have either a “run” method or a
“setup” method (see the “Components” section below) and a call to
the appropriate method is entered automatically into the Test
Procedure when you add a new component instance to the Test.

You can add in calls to other component methods, and comment-
out (or remove entirely) any code that you don’t want to run. Or
add in any arbitrary Python code.

The most common reason to edit the Test Procedure is just to
reorder the calls to the component methods so that things happen
in the right order. For example, if you are using some of the IESP’s
TX channels to output patterns to train your DUT, you need the
‘setup’ call for the TxChannelList to come before the call to the
‘run’ method of the EyeScan.

The rest of this section gives some examples of more advanced
things you can do — it can be skipped over on a first reading of this
manual.

Commenting out sections of code

To add a comment (for yourself or others) in the Test Procedure,
you can use the Python comment character ‘#’ — this makes
Python ignore anything after that character on that line. This is
often used to “comment-out” lines of code that you don’t want
executed (but want to keep for possible future use).

Another way to comment-out lines of code (or just to supply multi-
line comments for yourself) is to use Python’s triple quoting
mechanism. If you have 3 quote marks next to each other, Python
will ignore everything after that until the next occurrence of 3
quote marks in a row. You can use either the single quote
character (‘) or the double quote character (“) but you can’t mix
and match. Figure 15 shows an example using double quote
characters.

25

.....................

incrospect [ﬁ§]

technology

| Test Procedure
globalClockConfig.setupi()

Cormtrented-out this tempurarilﬂ
LxChannellLizstl.setupi)
bertZcanl.runi)

evelcanl.runi)

rere e

txChannellListZ.setup()
bert3canl.runi)

eveicanl.rund)

Figure 15 Illustration of the mechanism for commenting out sections of code.

Printing messages

You can use the Python ‘print’ command to output messages to the
log. For example:

print "Starting second section of the test"

To print the value of some variables along with your message, use
“%s”, “%d”, or “%g” as placeholders (for variables of type string,
integer, or float respectively) and then supply the variables in a
parenthesized list after a %. For example:

print "Iteration %d Value: %g" % (i, wval)

Assigning values to variables

You can assign values to variables of your choosing and then use
those variables later in the Test Procedure. Many of the
component methods return a value and it is often useful to assign
this return value to a variable. For example, the ‘run’ method of
BertScan returns a tuple (calibDelays, errCounts,
jitterAnalysisResults) — this is not usually used since these results
can be viewed via the BertScan viewer, however you might want to
do some specialized analysis on the data — something like this:

(calibDelays,

errCounts,

jitterAnalysisResults) = bertScanl.run()
analyzeBertData (calibDelays, errCounts)

26

incrospect

technology

Importing other Python code

.....................

The implementation of the function “analyzeBertData” in the
above example might be in a file of Python code that you wrote
earlier. Instead of copy/pasting this code into the Test Procedure,
you can make it available by using the Python ‘import’ command —
for example:

from myPythonStuff import *

In order for this to work, the file “myPythonStuff.py” must be
somewhere in the Python search path. Note that within Introspect
ESP, the parent folder of the “dftm” folder is in the search path, so
if you put your Python code files into that folder, they will be
found.

Changing properties of components

Looping

You can change properties of a component programmatically by
assigning to the properties and then calling either the ‘setup’ or
‘update’ method on the component. (The ‘setup’ method sends all
of the component property values to the IESP hardware, while the
‘update’ method only sends the values that have changed.)

For example:

txChannellistl.voltageSwings = [800, 600]
txChannellistl.preTaps = [0]
txChannellistl.update ()

You can loop (iterate) over sections of code by using the Python
looping constructs ‘for’ or ‘while’. (But note also that there is a
“Loop” component available to make this easier.) For example:

for i in range(0, 3): # i will be 0, 1, 2
print "%d) Hello" % (i)

myPatterns = [PAT DIV20, PAT K28 5, userPatternl]
for i in range(0, 3):
pattern = myPatterns [i]
print "Using pattern %s" % (pattern.name)
rxChannellListl.expectedPatterns = [pattern]
rxChannellListl.update ()
bertScanl.run ()

27

incrospect

technology

.....................

Defining functions

Inserting delays

You can define functions to encapsulate sections of code. For
example, as an alternative to the first loop above, you could define
a function:

def printHello(n):
for i in range (0, n):
print "%d) Hello" % (i)

and then call it like:
printHello (3)

A more interesting example (a simple version of what is done in
the IdentifyPattern component):

def tryPattern(pattern):

print "Trying pattern %s" % pattern.name
rxChannellListl.expectedPatterns = [pattern]
bertEnginel.setup ()
synchedChannels = bertEnginel.syncWithCdr ()
if synchedChannels:

return True
else:

return False

for pattern in [PCIel, PCIe2, PCIe4, PCIe8]:
if tryPattern (pattern) :
print “detected pattern %s” %
pattern.name
break

Note that the component variables (e.g. ‘bertEngine1’) are
effectively global variables in the Test Procedure and hence are
available inside functions that you define.

You can pause the execution of the Test Procedure for a specified
number of milliseconds by using the ‘sleepMillis’ function — for
example:

sleepMillis (1000) # one second delay

28

....................

incrospect EE

technology

Waiting until ready

You can pause the execution of the Test Procedure until something
else is ready via the ‘waitForOkDialog’ function — for example:

waitForOkDialog("Click OK when DUT is ready")

Running a shell script

You can run a shell script or other Windows executables via the
‘runShellScript’ function. This could be used to control other test
equipment, or to do data analysis. For example:

runShellScript ("perl myScript.pl")

Sending email or texting

You can send an email message at any point in the Test Procedure
by using the ‘send’ method of the EmailMessage component. For
example:

emailMessagel.send ("Partial Result",
"value: %.3f" % value)

Note that most cellular phone companies provide a way to send
text messages (SMS) to a phone via email (see for example:
http://www.makeuseof.com/tag/email-to-sms/) and thus the
EmailMessage component can be used to send text messages to
your phone.

PyLab: SciPy and MatPlotLib

The advanced functionality of SciPy and MatPlotLib is available
for use in the Python code you write in the Test Procedure or in
Function components. All of the names from the ‘pylab’ module
are automatically available in the environment used for running
Tests. This means that the environment is similar to that obtained
with the “--pylab” option to iPython.

29

incrospect

technology

....................

Lower-level access to the IESP hardware

Usually you control the IESP hardware via the facilities provided
by the components. But lower-level access is available via the ‘iesp’
object that you can obtain by calling IESP.getInstance() - for
example:

iesp = IESP.getInstance ()

iesp.setCdrModeEnabled([1, 2, 3], True)

For more info on the functions mentioned see the documentation
in the files “svt.html” and “iesp.html” (in the folder “Doc”). To
learn more about Python, see the documentation at
http://www.python.org

30

incrospect

Gechnology

vvvvvvvvvvvvvvvvvvvvvvv

Saving & Loading Tests

The Introspect ESP application is a document-based application
like Microsoft Word. Each Test window is a separate document
and can be saved and loaded independently. You can have several
Test windows open at the same time.

When you create a new Test, the associated parameters and data
are either kept in RAM or in a temporary folder on your hard disk.
This allows you to do quick “one-off” experiments without being
bothered about filenames, etc. But usually you will want to save
your Tests (and associated Result data) for later use. You do this
via the “Save” menu item in the “File” menu. A saved Test is a
folder (containing sub-folders and files) so the “Save” menu item
will prompt you for the name and location of a folder to save the
Test in. After you save the Test, the name of the Test folder will
appear at the top of the Test window.

If you want to keep the current version of your Test while
continuing to modify the parameters, use the “Save As...” menu
item in the “File” menu. This will create a copy of the Test in a
different folder.

To load a previously saved Test, use the “Open...” menu item in the
“File” menu. You will be prompted to choose the Test folder to
open.

Structure of a Test folder

A Test folder always has sub-folders “Params” and “Results”. If
you have enabled writing of logs to a file (see the
“Customization/Preferences” section below), then there will also
be a sub-folder “Logs”.

The “Params” folder usually only has one file: “testProcedure.py”.
This file contains Python code to create the components of the
Test, followed by the code of the Test Procedure. If you are careful
to get the syntax correct, you could edit the “textProcedure.py” file
in a text editor (e.g. “Notepad++” or “Komodo”) — this is especially
useful if you have several Tests that you want to change in the
same way.

The “Results” folder is initially empty but each time you run the
Test, a new sub-folder is created there (by default these folders are
named according to the date/time) to hold the results of the run.

31

incrospect

Gechnology

vvvvvvvvvvvvvvvvvvvvvvv

Each run results sub-folder contains:

A snapshot of the “testProcedure.py” file — this file
contains the state of the Test parameters used to generate
the associated results data. It might be useful if you have
changed the Test parameters after that run and want to
revert to what it was at that time. (You could revert by
manually copying the “testProcedure.py” file from the run
results folder to the “Params” folder.)

One or more component results sub-folders, each of which
contains:

A file “.resultInfo.csv” with info about the component
results. This file is normally hidden since its name starts
with a dot.

One or more CSV files with the raw data from the
component’s ‘run’ method. Usually there is one file per
channel and the channel number is part of the filename.

The “Logs” folder (if enabled) contains the log files with the
messages that appear in the Log tab. There is one log file
for each session, named with the date/time of the start of
the session.

If you are short of disk space, you can remove old log files and any
run results that you no longer need.

32

incrospect

cechnology

vvvvvvvvvvvvvvvvvvvvvvvv

Components

The Introspect ESP software loads components (implemented in
Python) from the three sub-folders of the “dftm/components”
folder. The “basic” sub-folder holds the general-purpose
components — these components are often used in the
implementation of other components. The “extra” sub-folder
holds special-purpose components like those for DisplayPort
testing. The “user” folder holds user-defined components.
(Documentation on how to create user-defined components is
available upon request.)

Each component has a number of properties (attributes in Python)
and a number of methods. The component properties are shown in
the Properties panel of the Test window.

Most basic components have a ‘setup’ method and an ‘update’
method. The ‘setup’ method sends all of the component property
values to the IESP hardware. The ‘update’ method sends only
those property values that have changed since the last ‘setup’ or
‘update’.

Components that produce a result (measurement data) have a
‘run’ method. The ‘run’ method often calls the ‘setup’ method
internally. The ‘run’ method usually returns a value but the return
value is not usually used in the Test Procedure since the data has
also been written to files which are used by the various Result
viewers.

Full documentation on the component properties and methods is
in the file “svt.html” (in the folder “Doc”). Note that the

components’ Python class names usually start with “Svt” but this
prefix is omitted in the component class names listed in the GUI.

The two most basic component classes are RxChannelList and
TxChannelList. An RxChannelList instance represents a selection
of the RX channels of the IESP. Components that do
measurements on incoming signals usually refer to an
RxChannelList component. Such components usually invoke the
‘setup’ method of the RxChannelList component within their
‘setup’ method and thus it is not usually necessary to explicitly call
the ‘setup’ method of an RxChannelList component in the Test
Procedure.

A TxChannelList instance represents a selection of the TX
channels of the IESP. TxChannelList components are usually used
to generate outgoing signals to be sent to the DUT. Since they are
not (usually) referred to by some other component, it is usual to

33

incrospect

cechnology

vvvvvvvvvvvvvvvvvvvvvvv

have a call to the ‘setup’ method of the TxChannelList component
in the Test Procedure.

There is always a component instance named ‘globalClockConfig’.
This component sets up the IESP data rate and other clock
parameters via the call to its ‘setup’ method which is at the start of
the Test Procedure.

If you use one of the wizards, a series of components will be
created and linked together automatically. But it is easy to get the
same thing by creating the components via the “Add Component”
dialog and linking them up manually using the menus in the
Properties panel. For example, to get the same thing as what the
“Eye Scan” wizard produces, add an RxChannelList component, a
BertEngine component, and an EyeScan component, and then link
the BertEngine to the RxChannelList component and link the
EyeScan to the BertEngine component. It doesn’t matter which
link you do first. All that matters is that the cross-references exist
when you run your Test — if they don’t, you will get a runtime error
message.

It is quite common (and recommended) to have several
components sharing a reference to a component. For example, the
references might go like this:

bertScani -> bertEngine1 -> rxChannelList1
eyeScan1 -> bertEngine1 -> rxChannelList1

analogCapture1 -> rxChannelList1

34

incrospect

cechnology

vvvvvvvvvvvvvvvvvvvvvvv

Running Tests from the Command
Line

It is sometimes useful to run Tests from the command line instead
of from within the Introspect ESP GUI. For example, you might
want to run a Test from LabVIEW, or in some other context. Since
the parameters of a Test are saved as Python code in the
“testProcedure.py” file (in the “Params” sub-folder of the Test
folder), this is easy to do.

The Python script “runSvtTest.py” supplied in the “Python” folder
can be used to run a saved Test from the command line. If you
look at that script, you will see that it does three things:

Loads the Test from the given folder using:
test = SvtTest.load(testFolderPath)
Connects to the IESP hardware using:
iesp.connectViaFtdi ()

Runs the Test using:

test.run()

35

vvvvvvvvvvvvvvvvvvvvvvv

cechnology

incrospect m

Customization/Preferences

When the Introspect ESP GUI starts up, it reads the file
“IntrospectESP_GULini”. This file contains preference settings.
Here are some of the more commonly changed preferences:

e formFactor

o This specifies which IESP hardware/firmware is to
be used. For example, to use the SV1C hardware,
you would set this preference to “SV1” (without the
quotes).

e enabledSubParts

o This specifies which sub-parts of the IESP
hardware are available. For example, with the
DV1600 hardware, you would set this preference to
“moduleA, moduleB” (without the quotes) if both
modules are available. The Introspect ESP software
will connect to each sub-part separately.

e testDefaultPath

o This specifies the default save and load locations for
all Tests. It follows the same format as specified
above for ‘pythonFolderPath’. This preference is
disabled by default. To enable it, remove the ;’
found at the beginning of the line. (The semi-colon
is the comment character for INTI files.)

e defaultDataRate
o This specifies the default data rate (in Mpbs).
e writeMessagesToLogFile

o Ifyou set this to true (it defaults to false), the
messages that appear in the Log tab will be written
to a file under the Test folder.

There are other preference settings for customizing the colours of
the Test window and for defining eye masks for use in the EyeScan
viewer. Comments in the “IntrospectESP_GULini” file explain
how to use these.

The Test Procedure area has syntax highlighting supplied by the
“ScintillaNet” .NET component
(http://scintillanet.codeplex.com/). You can customize the colours

36

incrospect

technology

......................

used by editing the file “ScintillaNet.xml” that is in the “GUI”
folder.

The icons used on the right side of the “Results” tab are supplied
as PNG files in the “ResultIcons” folder in the “GUI” folder. You
could substitute different image files if you want to customize
these icons. The size of the result icons is determined by the
preferences “resultlconsWidth” and “resultIconsAspectRatio”.

37

incrospect

technology

....................

Troubleshooting

Failure to connect to IESP

BERT sync failure

Check the messages in the Log tab. If the error message says
something like “No FTDI devices found”, that likely means that
your computer isn’t connected (by USB) to the IESP hardware. If
the error message says something like “Command processor not
responding”, that likely means that the IESP hardware isn’t
powered on, or is hung and needs to be power-cycled.

First check that the ‘expectedPatterns’ in your RxChannelList
component corresponds to the patterns of the incoming signals.
Try reversing the ‘polarities’ in your RxChannelList component.
Use the RawDataCapture component to grab a snapshot of the
incoming signal and check that it is as expected. Use the
AnalogCapture component to check signal integrity. If the input
signal is noisy, try increasing the ‘syncErrorThreshold’ value in
your BertEngine component.

Contacting customer support

Please send a detailed description of the problem (including a copy
of the Test folder if possible) to customer support:

support@introspect.ca

38

incrospect

technology

Introspect Technology
195 Labrosse Avenue, Pointe-Claire
Quebec, Canada H9R 1A3
http://introspect.ca

