

DATA SHEET

SV5C-DPTXCPTX

MIPI D-PHY / C-PHY Generator

C SERIES

Table of Contents

Introduction	3
Overview	3
Key Benefits	3
Applications	
Physical Connections	
MXP High Speed Connector Pinout	
Ordering Information	
Specifications	5

Introduction

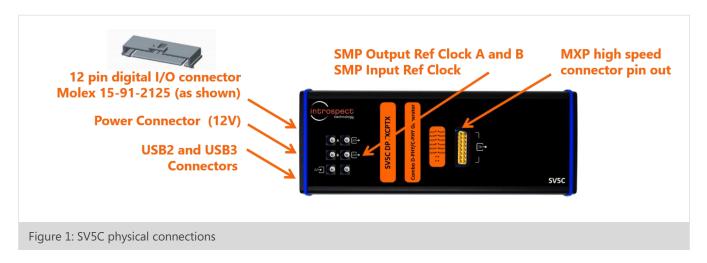
OVERVIEW

The SV5C-DPTXCPTX MIPI D-PHY/C-PHY Generator is an ultra-portable, high-performance instrument that enables characterization and validation of MIPI D-PHY and C-PHY receiver ports. The instrument operates at a continuous range of data rates and includes analog parameter controls that enable deep insights into receiver voltage sensitivity, receiver skew and jitter tolerance for receiver stress-testing.

The instrument operates with the easy-to-use, highly versatile Introspect ESP Software environment for automated physical layer compliance test. Introspect ESP Software also includes pattern synthesis tools that enable the generation of complete DSI-2 or CSI-2 packets such as color bars and active image frames for system-level test.

This document describes the electrical characteristics and key specifications of the D-PHY and C-PHY Generator. Please refer to User Manual documentation for operating instructions.

KEY BENEFITS


- Any-rate operation to 8.0 Gbps per lane (D-PHY) and 6.5 Gsps per trio (C-PHY)
- Per-lane HS voltage level and common-mode control
- Per-lane LP voltage level control
- Per-lane skew injection with < 1 ps resolution
- Per-lane multi-source jitter injection
- State-of-the-art programming environment based on the highly intuitive Python language

APPLICATIONS

- Parallel physical layer validation
- DSI and CSI packet and protocol testing
- Plug-and-play system-level validation

PHYSICAL CONNECTIONS

MXP HIGH SPEED CONNECTOR PINOUT

TABLE 1: SIGNAL MAPPING OF THE MXP CONNECTOR FOR SV5C-DPTXCPTX

	MXP PIN	D-PHY PINOUT	C-PHY PINOUT
	1	Lane 1 P	Trio 1 A
MXP	2	Lane 1 N	Trio 1 B
Top View	3	Lane 2 P	Trio 1 C
	4	Lane 2 N	Trio 3 A
$\bigcirc\bigcirc\bigcirc$ 9	5	Lane 3 P	Trio 3 B
\bigcirc \bigcirc 10	6	Lane 3N	Trio 3 C
$\bigcirc \bigcirc $	7	NC	NC
	8	NC	NC
) () 12	9	Lane 4 P	Trio 2 A
) () 13	10	Lane 4 N	Trio 2 B
○ () 14	11	NC	Trio 2 C
) () 15	12	NC	Trio 4 A
16	13	CLK P	Trio 4 B
	14	CLK N	Trio 4 C
	15	NC	NC
	16	NC	NC

ORDERING INFORMATION

TABLE 2: ITEM NUMBERS FOR THE SV5C-DPTXCPTX AND RELATED PRODUCTS

PART NUMBER	NAME	KEY DIFFERENTIATORS
5786	SV5C-DPTXCPTX	Supports both D-PHY and C-PHY
5782	SV5C-DPTX	D-PHY only
5783	SV5C-CPRX	C-PHY only

Specifications

TABLE 3: GENERAL SPECIFICATIONS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Application / Protocol Support			
Physical layer interface	D-PHY C-PHY		
MIPI protocol	CSI/DSI		Flexible pattern architecture allows for the generation of encoded PHY data, unencoded PHY data, or entire CSI/DSI frames
LP/HS Handling	Automatic		Tester automatically generates LP and HS data
Ports			
Number of D-PHY Lanes	4 Lanes and CLK		
Number of C-PHY Trios	4 Trios		
Number of Dedicated Output Reference Clocks	2		Individually synthesized frequency and output format
Number of Dedicated Input Reference Clocks	1		Used as external reference clock input
Number of Trigger Inputs	2		Via Molex connector

Number of Flag Outputs	2		Via Molex connector
Number of I2C/I3C Masters	1		Via Molex connector
Connections to PC for Introspect ESP Software Control	2		USB2 and USB3
Power Consumption			
DC Input Voltage	12	Volt	
Current Draw	TBD	Amp	8.0 Gbps / 4 Lane D-PHY operation
Current Draw	TBD	Amp	6.5 Gsps / 4 Trio C-PHY operation
Data Rates and Frequencies			
Minimum Programmable Data Rate	80.0	Mbps Msps	D-PHY C-PHY
Maximum Programmable Data	8.0	Gbps	D-PHY
Rate	6.5	Gsps	C-PHY
Frequency Resolution of Programmed Data Rate	1	kHz	
Minimum External Input Clock Frequency	10	MHz	
Maximum External Input Clock Frequency	250	MHz	
Supported External Input Clock I/O			LVDS (typical 400 mVpp input)
Standards			LVPECL (typical 800 mVpp input)
Minimum Output Clock Frequency	10	MHz	
Maximum Output Clock Frequency	500	MHz	
Output Clock Frequency Resolution	1	kHz	
Supported External Output Clock			LVDS, LVPECL, CML, HCSL, and
I/O Standards			LVCMOS

TABLE 4: MIPI TRANSMITTER CHARACTERISTICS

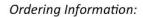
PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Output Coupling			
Output Differential Impedance	100	Ohm	
Differential Impedance Tolerance	+/- 10	Ohm	
Output Single-Ended Impedance	50	Ohm	
Single-Ended Impedance Tolerance	+/- 5	Ohm	
HS Voltage Performance			
Minimum Outrout Valtage Coding	10	mV	D-PHY, differential
Minimum Output Voltage Swing	5	mV	C-PHY, single ended
Mariana O tanti Waltana Gaira	600	mV	D-PHY, differential
Maximum Output Voltage Swing	400	mV	C-PHY, single ended
Voltage Swing Desolution	10	mV	D-PHY, differential
Voltage Swing Resolution	5	mV	C-PHY, single ended
Voltage Swing Accuracy	>2% or 5 mV	%, mV	
Minimum Common Mode Voltage	-100	mV	D-PHY or C-PHY
Maximum Common Mode Voltage	500	mV	D-PHY or C-PHY
Common Mode Voltage Resolution	1	mV	D-PHY or C-PHY
Common Mode Voltage Accuracy	>2% or 5 mV	%, mV	
Rise and Fall Time	50	ps	Typical, 20% to 80%
Swing and Common Mode Setting	Per Lane Per Trio		D-PHY C-PHY

LP Voltage Controls			
Minimum Programmable LP Logic High Level	0	mV	LP voltage control specifications apply to both D-PHY and C-PHY
Maximum Programmable LP Logic High Level	1300	mV	
Minimum Programmable LP Logic Low Level	-100	mV	
Maximum Programmable LP Logic Low Level	600	mV	
Logic Level Control Resolution	1	mV	
Logic Leve Accuracy	>2% or 5 mV	%, mV	

TABLE 4: MIPI TRANSMITTER CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
Jitter and Noise Performance			
Random Jitter (RMS)	TBD		D-PHY, differential D-PHY, single ended
Minimum Frequency of Injected Deterministic Jitter	0.1	kHz	
Maximum Frequency of Injected Deterministic Jitter	50	MHz	
Frequency Resolution of Injected Deterministic Jitter	0.1	kHz	
Maximum Peak to Peak Deterministic Jitter	2	UI	Numerically generated. Only tested to 1000 ps
Magnitude Resolution of Injected Deterministic Jitter	500	fs	
Accuracy of Injected Deterministic Jitter	>10% or 10 ps	%, ps	

Channel Skew Performance			
Charmer Skew Performance			
Coarse Skew Range:			
Minimum Programmable Skew,	-20	UI	D-PHY, Lane to Lane
in Integer UI	-20	UI	C-PHY, Trio to Trio
Coarse Skew Range:			
Maximum Programmable Skew,	+20	UI	D-PHY, Lane to Lane
in Integer UI	+20	UI	C-PHY, Trio to Trio
Fine Skew Range:			
Minimum Programmable Skew	-500	ps	D-PHY, HS Clock to Data
	-500	ps	C-PHY, Wire to Wire
			Testing limit – hardware is capable of
			larger skews
Fine Skew Range:			
Maximum Programmable Skew	+500	ps	D-PHY, HS Clock to Data
_	+500	ps	C-PHY, Wire to Wire
			Testing limit – hardware is capable of
			larger skews
Fine Skew Injection Resolution	1	ps	D-PHY or C-PHY


TABLE 7: PATTERN HANDLING CHARACTERISTICS

PARAMETER	VALUE	UNITS	DESCRIPTION AND CONDITIONS
User-Programmable Pattern Memory			
Minimum Pattern Segment Size	8	Bits	
Maximum Pattern Segment Size	8	GBytes	
Total Memory Space for Transmitters	8	GBytes	
Pattern Sequencer			
Sequence Control	Yes		Loop infinite Loop-on-count (see count below) Play to end
Number of Sequencer Slots per Pattern Generator	16		Each pattern generator can string up to 16 different segments together, each with its own repeat count
Number of Entry Slots	1		Separate from above 16 segments
Number of Exit Slots	1		Separate from above 16 segments
Maximum Repeat Count Per Slot	65536		
Maximum Repeat Count for Outer Loop	65536		Outer loop can encompass any number of slots
Additional Pattern Characteristics			
Escape Mode Command Entry	Yes		Per Lane
Pattern Switching	Yes		Wait to end of segment, or immediate

Revision Number	History	Date
1.0	Document release	July 27, 2020
1.1	Fixed error in the data rate specification	July 27, 2020
1.2	Updated D-PHY data rate specification	July 14, 2021

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282