EYP-DBR-0633-00005-2000-BFW01-0005

Revision 0.74

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

General Product Information

Product	Application
633 nm DBR Laser	HeNe Laser Replacement
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	(meets exactly 632.991 nm)
including Monitor Diode, Thermoelectric Cooler and Thermistor	Please note: The use of the laser in
Collimated beam	3D trackers is protected by patents

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T _{LD}	°C	0		25
Forward Current	I _F	mA			200
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			6
TEC Current	I _{TEC}	А			1.1
TEC Voltage	V _{TEC}	V			2.8

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	0		50
Operational Temperature at Laser Chip	T _{LD}	°C	10		15
Forward Current	I _F	mA		80	140
Output Power	P _{opt}	mW			5

Characteristics at T_{LD} = 15° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	632	633	634
Target Wavelength	λ_{T}	nm		632.991	
Linewidth (FWHM)	Δλ	MHz		1	
Mode-hop free Tuning Range	$\Delta \lambda_{tune}$	pm			
Sidemode Supression Ratio	SMSR	dB	30		
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.045	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.001	

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor Measurement Conditions / Comments reached within T_{LD} = 0 ° ... 20° C at 5 mW P_{opt} = 5 mW

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

1/4

2017-03-02

EYP-DBR-0633-00005-2000-BFW01-0005

Revision 0.74

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

nietice at T

Characteristics at ILD = 15° at BOL Cont							
Parameter	Symbol	Unit	min	typ	max		
Laser Current @ $P_{opt} = 5 \text{ mW}$	I _{LD}	mA			180		
Slope Efficiency	η	W / A	0.15	0.4			
Threshold Current	I _{th}	mA		80	120		
Divergence parallel (FWHM)	$\Theta_{ }$	0		0.1			
Divergence perpendicular (FWHM)	Θ_{\perp}	0		0.1			
Beam Diameter horizontal	d	mm		0.7	1.0		
Beam Diameter vertical	d_\perp	mm		0.6	1.0		
Degree of Polarization	DOP	%		90			

Measurement Conditions / Comments

Ith drift may occur, no violation of the max. value parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) $P_{opt} = 5$ mW; E field perpendicular to base plate

Monitor Diode

Symbol	Unit	min	typ	max
I _{mon} / P _{opt}	µA/mW	10		400
	,	Symbol Unit		

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.7	1.1
Voltage	U _{TEC}	V		1.7	2.8
Power Dissipation (total loss at case)	Ploss	W		0.4	0.5
Temperature Difference	ΔΤ	К			60

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	С		;	3.7755 x 10	-8

Measu	urement Conditions / Comments	
U₀ =	5 V	Ì

Measurement Conditions / Comments
$P_{opt} = 5 \text{ mW}, \Delta T = 40 \text{ K}$
$P_{opt} = 5 \text{ mW}, \Delta T = 40 \text{ K}$
$P_{opt} = 5 \text{ mW}, \Delta T = 40 \text{ K}$
$P_{opt} = 5 \text{ mW}, \Delta T = T \text{case} - T \text{LD} $

$T_{LD} = 25^{\circ} C$	
$R_1/R_2 = e^{\beta(1/T_1-1/T_2)}$ at $T_{LD} =$	0° 50° C
$1/T = A + B(\ln R) + C(\ln R)^3$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

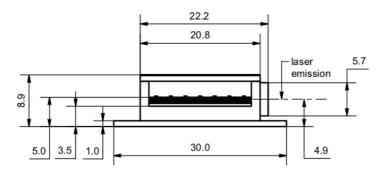
2/4

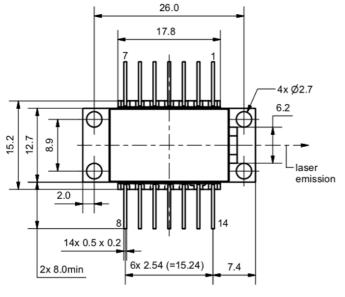
1.00

2017-03-02

2017-03-02

EYP-DBR-0633-00005-2000-BFW01-0005


Revision 0.74

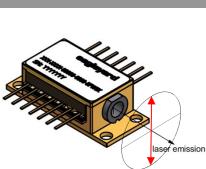

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
All 1	4 pins are isolated from case.		

Package Drawings

AIZ-15-0729-0947


© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

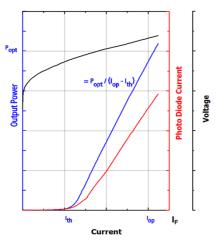
eagleyard Photonics GmbH

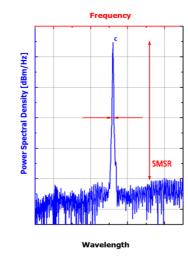
Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com

3/4

E field (vertical)

top view


EYP-DBR-0633-00005-2000-BFW01-0005


Revision 0.74

SINGLE FREQUENCY LASER DIODES **Distributed Bragg Reflector Laser**

Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DBR laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49, 30, 6392 4520 fax +49. 30. 6392 4529

info@eaglevard.com www.eagleyard.com

2017-03-02

