EYP-DBR-0633-00003-2000-BFY02-0000

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

General Product Information

Product	Application
633 nm DBR Laser	HeNe Laser Replacement
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology and Sensing
including Monitor Diode, Thermoelectric Cooler and Thermistor	HeNe Laser Replacement
with SM Fiber with angle-polished Connector (APC)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T _{LD}	°C	-5		25
Forward Current	I _F	mA			160
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			4
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	0		50
Operational Temperature at Laser Chip	T _{LD}	°C	10		18
Forward Current	I _F	mA		100	140
Output Power	P _{opt}	mW			3

Characteristics at T_{LD} = 15° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	632	633	634
Linewidth (FWHM)	Δλ	MHz		1	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.045	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.001	
Sidemode Supression Ratio	SMSR	dB	30		

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments see images on page 4 P_{opt} = 3 mW

Measurement Conditions / Comments

measured by integrated Thermistor

ex fiber

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

eagleyard

2017-07-05

EYP-DBR-0633-00003-2000-BFY02-0000

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

Characteristics at T _{LD}	= 15° at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Laser Current @ P _{opt} = 3 mW	I _{LD}	mA			140
Slope Efficiency	η	W / A	0.1	0.2	0.3
Threshold Current	l _{th}	mA		80	120

Measurement Conditions / Comments Ith drift may occur, no violation of the max. value

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	5		200

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C		;	8.7755 x 10	-8

Measurement Conditions / Comments $P_{opt} = 3 \text{ mW}, \Delta T = 20 \text{ K}$ $P_{opt} = 3 \text{ mW}, \Delta T = 20 \text{ K}$ $P_{opt} = 3 \text{ mW}, \Delta T = 20 \text{ K}$

$\Gamma_{opt} = 5 1100, \Delta I = 20 K$	
$P_{opt} = 3 \text{ mW}, \Delta T = \text{Tcase} - \text{TLD} $	

Measurement Conditions / Comments

 $U_R = 5 V$

Measurement Conditions / Con	nments
$T_{LD} = 25^{\circ} C$	
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)}$ at $T_{LD} =$	0° 50° C
$I/T = A + B(\ln R) + C(\ln R)^3$	
T: temperature in Kelvin	
R: resistance at T in Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

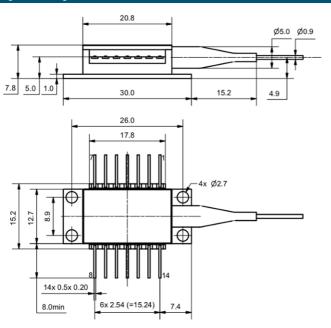
eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com

2017-07-05

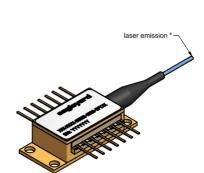
2017-07-05

EYP-DBR-0633-00003-2000-BFY02-0000


Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

Pin Assignment


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins a	are isolated from case unless noted otherwise.		

Package Drawings

Fiber and Connector Type

SM Fiber	125 / 4.5 μ m (l = 1 +/-0.1 m)
Connector	FC/APC (narrow key / 2mm)

Measurement Conditions / Comments

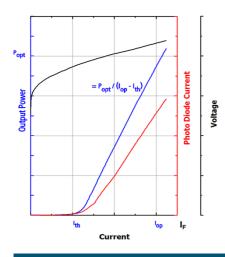
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

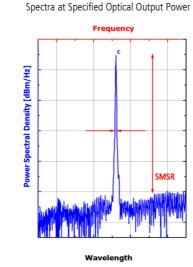
eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

AIZ-16-0222-1415

info@eagleyard.com www.eagleyard.com


EYP-DBR-0633-00003-2000-BFY02-0000


Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Bragg Reflector Laser

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DBR laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

4 mW MAX OUTPUT AT 633 m CLASS IV LASER PRODUCT

As SEMICONDUCTOR LASER DIODE

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

2017-07-05

eaglevard

4/4