Revision 0.52

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
Tunable 1083 nm DFB Laser	Spectroscopy
with hermetic 14 Pin-Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Magnetometer
with integrated Beam Collimation	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			90
TEC Current	I _{TEC}	А			1.1
TEC Voltage	V _{TEC}	V			2.8

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		40
Forward Current	I _F	mA			190
Output Power	P _{opt}	mW	20		80

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	1082	1083	1084
Linewidth (FWHM)	Δλ	MHz		2	
Mode-hop free Tuning Range	$\Delta\lambda_{tune}$	pm		1500	
Sidemode Supression Ratio	SMSR	dB	30	45	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	

eagleyard

2017-03-02

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor Measurement Conditions / Comments see images on page 4

reached by temperature modulation $P_{oot} = 80 \text{ mW}$

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

Revision 0.52

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at BOL					
Parameter	Symbol	Unit	min	typ	max
Mode-hop free Temperature Range	T _{LD}	° C	15		40
Mode-hop free Power Range	P _{opt}	mW	20		80
Laser Current @ $P_{opt} = 80 \text{ mW}$	I _{LD}	mA			190
Slope Efficiency	η	W / A	0.6	0.8	1.0
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		0.1	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		0.1	
Beam Diameter horizontal (1/e ²)	d	mm		1.0	1.2
Beam Diameter vertical (1/e ²)	d_\perp	mm		0.8	1.2
Degree of Polarization	DOP	%		90	

parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) parallel to the base plate of the housing (see p. 3) perpendicular to base plate of the housing (see p. 3) $P_{opt} = 80$ mW; E field parallel to the base plate

Measurement Conditions / Comments temperature measured by integrated themistor

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I_{mon} / P_{opt}	µA/mW	0.05		10

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.4	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C			8.7755 x 10	-8

Measurement Conditions / Comments				
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 80 \text{ mW}, \Delta T = Tcase - TLD $				

Measurement Conditions / Comments					
$T_{LD} = 25^{\circ} C$					
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)}$ at $T_{LD} =$	0° 50° C				
$1/T = A + B(\ln R) + C(\ln R)^3$					
T: temperature in Kelvin					
R: resistance at T in Ohm					

eagleyard

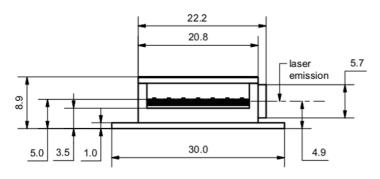
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

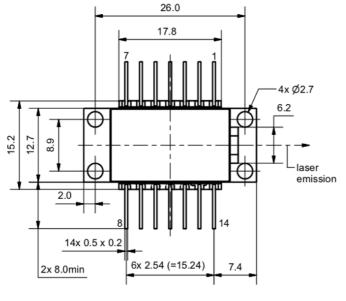
eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com

2/4

Revision 0.52

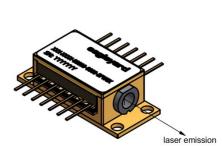

2017-03-02

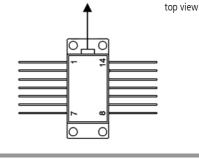

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Pin Assignment

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins	are isolated from case unless noted otherwise.		

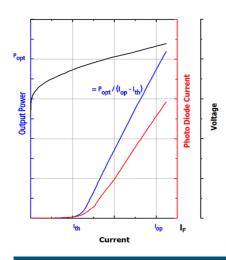
AIZ-15-0729-0947

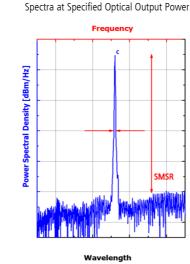

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.


eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com




Revision 0.52

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Laser Emission INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION **CLASS 4 LASER PRODUCT** WAVELENGTH 1083 nm MAX, OUTPUT POWER 90 mW DANGER

eaglevard

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49, 30, 6392 4520 fax +49. 30. 6392 4529

info@eaglevard.com www.eagleyard.com

2017-03-02