

We focus on power.

Revision 1.01

25.11.2011

page 1 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

General Product Information

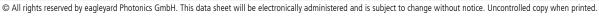
Product	Application
1064 nm DFB Laser with hermetic Butterfly Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
PM Fiber with angle-polished Connector	Nd:YAG Replacement
High-reliable Package compliant for Space Applications	

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-40		85
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I _F	mA			190
Reverse Voltage	V_R	V			2
Output Power	P _{opt}	mW			45
TEC Current	I _{TEC}	Α			1.8
TEC Voltage	V_{TEC}	V			3.2

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Recommended Operational Conditions


	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	-20		65
Operational Temperature at Laser Chip	T_{LD}	°C	15		40
Forward Current	I _F	mA			170
Output Power	P_{opt}	mW	10		40

Measurement Conditions / Comments
measured by integrated Thermistor
ex fiber

Characteristics at T_{LD} = 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1063	1064	1065
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	$d\lambda$ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ I _F = 170 mA	P_{opt}	mW	40		

Measurement Conditions / Comments
see images on page 4
ex fiber

We focus on power.

Revision 1.01

25.11.2011

page 2 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

Changetonistics of	T _{amh} 25 °C at Begin Of Life	and the second s
Linaracteristics at	lambes to be at begin ut life	cont'd

Parameter	Symbol	Unit	min	typ	max
Slope Efficiency	S	W/A	0.2	0.4	0.7
Threshold Current	I_{th}	mA			70
Sidemode Supression Ratio	SMSR	dB	30	45	
Mode-hop free Temperature Range (SMSR $>$ 30	dB)				
Variant 0	T_LD	° C		25	
Variant 1	T_LD	° C		25	
Variant 2	T_LD	° C	15		40
Mode-hop free Power Range (SMSR > 30 dB)					
Variant 0	P_{opt}	mW		40	
Variant 1	P_{opt}	mW	10		40
Variant 2	P_{opt}	mW	10		40
Polarization Extinction Ratio	PER	dB		20	
Spatial Mode (transversal)				TEM ₀₀	

Measurement Conditions / Comments		
see below		
Temperature at Laser Chip		
see order code scheme on p. 5		
SMSR > 30 dB		
see order code scheme on p. 5		
P _{opt} = 40 mW		
fundamental mode		

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA / mW	1		20
Reverse Voltage Monitor Diode	$U_{R\ MD}$	V	3		5

Measurement Conditions / Comments
$U_R = 5 \text{ V}$, target values

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments				
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 40 \text{ mW},$	$\Delta T = I T_{case} - T_{LD} I$			

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3892	

Measurement Conditions / Comments

We focus on power.

Revision 1.01

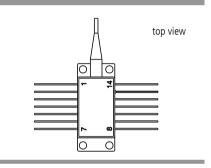
25.11.2011

page 3 from 5

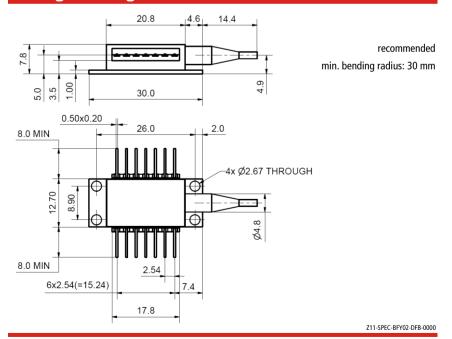
DISTRIBUTED FEEDBACK LASER

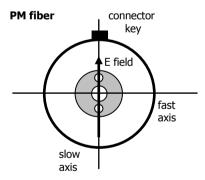
GaAs Semiconductor Laser Diode with integrated grating structure

Fiber and Connector Type


PM Fiber	900 / 125 / 5.5 μ m, UV/Polyester-elastomer Coating (I = 1 +/-0.1 m)
Connector	different variants available
	FC/APC (narrow key / 2mm)
	► SC/APC
	• other types on request

Measurement Conditions / Comments


see order code scheme


Package Pinout

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected

Package Drawings

slow axis of the PM fiber aligned to connector key

hermetically sealed Package:

Leak Rate < 5 · 10⁻⁸ atm.cc./s acc. MIL-STD-883E

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

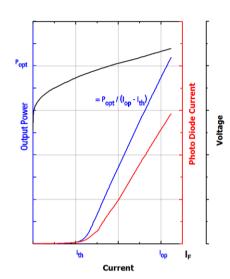
We focus on power.

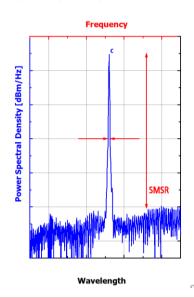
Revision 1.01

25.11.2011

page 4 from 5

DISTRIBUTED FEEDBACK LASER


GaAs Semiconductor Laser Diode with integrated grating structure



Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com

We focus on power.

Revision 1.01

25.11.2011

page 5 from 5

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

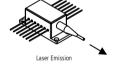
Order Code Scheme

_	_	_	_	_	 L _	
					t۸	

FC/APC (narrow key / 2mm)

SC/APC

other connector or fiber types upon request


EYP-DFB-1064-00040-1500-BFY02-	0 x 0	х
	0	T
	1	
		Д
		0
		1
		2

Mode-hop free Tuning Range (Minimum Side Mode Suppression Ratio > 30 dB)

$P_{opt} = 40 \text{ mW};$	$T_{LD} = 25^{\circ}$	(Variant 0)
$P_{opt} = 10 \dots 40 \text{ mW};$	$T_{LD} = 25^{\circ}$	(Variant 1)
$P_{opt} = 10 \dots 40 \text{ mW};$	$T_{LD} = 15^{\circ} \dots 40^{\circ} C$	(Variant 2)

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on a proper metal heat sinks will contribute to stable operation and a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

