

20.11.2015

EYP-DFB-1060-00040-1500-BFY02-0002

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information	
Product	Application
1060 nm DFB Laser with hermetic Butterfly Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
PM Fiber with angle-polished Connector	THz Generation
ROHS compliant	

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-40		85
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			180
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			50
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		40
Forward Current	I _F	mA			170
Output Power	P _{opt}	mW	10		40

Characteristics at T_{LD} = 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{c}	nm	1059	1060	1061
Tuning Range by Temperature	$\Delta\lambda_T$	nm		1.5	
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ I _F : 170 mA	P _{opt}	mW	40		

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings can cause permanent damage to the device.

Measurement Conditions / Comments

measured with integrated thermistor

Measurement Conditions / Comments

The laser allows wavelength tuning by temperature or current variation; in case of external backreflections small mode-hops of 100 MHz or less may appear; the use of a BFW01 or TOC03 package variants and effective optical isolation is recommended for spectroscopic application requiring absolutely mode-hop-free tuning

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

EYP-DFB-1060-00040-1500-BFY02-0002

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{an}	_{nb} 25 °C at l	3egin C)f Life		cont'd
Parameter	Symbol	Unit	min	typ	max
Slope Efficiency	η	W / A	0.2	0.4	0.7
Threshold Current	I _{th}	mA			70
Sidemode Supression Ratio	SMSR	dB	30	50	
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments	
$P_{opt} = ~10 \text{ mW}$ 40 mW $$; $T_{LD} = 15 \ ^{\circ}\text{C}$ 40 $^{\circ}\text{C}$	
$P_{opt} = 40 \text{ mW}$	

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} /P _{opt}	µA/mW	1		20

Measurement Conditions / Comments Reverse Voltage $U_{R MD} = 5 V$

Thermoelectric Cooler

Symbol	Unit	min	typ	max
I _{TEC}	А		0.4	
U _{TEC}	V		0.8	
Ploss	W		0.4	
ΔΤ	Κ			50
	I _{TEC} U _{TEC}	I _{TEC} A U _{TEC} V	I _{TEC} A U _{TEC} V	I _{TEC} A 0.4 U _{TEC} V 0.8

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient	А			l.1293 x 10 ⁻	3
Steinhart & Hart Coefficient	В			2.3410 x 10 ⁻	4
Steinhart & Hart Coefficient	С		8	3.7755 x 10 ⁻	8

Measurement C	Conditions / Comments	
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW},$	$\Delta T = 20 \text{ K}$	
$P_{opt} = 40 \text{ mW},$	$\Delta T = I T_{case} - T_{LD} I$	

Measurement Conditions / Comments	
T = 25° C	
$R_1/R_2=e^{\beta(1/T_1\cdot1/T_2)}$ at $T=0^\circ\ldots50^\circ$ C	
$1/T = A + B(\ln R) + C(\ln R)^3$	
T: temperature in Kelvin	
R: resistance at T im Ohm	

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com

20.11.2015

EYP-DFB-1060-00040-1500-BFY02-0002

Revision 0.70

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Fiber an	nd Connector Typ	e			
				Measurement Conditions / Comments	
PM Fiber	900 / 125 / 5.5 µm, UV/	Polyester-elaston	ner Coating (I = 1 +/-0.1 m)		
Connector	FC/APC (narrow key / 2r	mm)		other connectors on request	
Packag	e Pinout				
1 Thermo				Π	
	pelectric Cooler (+)	14	Thermoelectric Cooler (-)	Н	top
2 Thermis		14 13	Thermoelectric Cooler (-) Case	— <u> </u>	top
			. ,		top

Laser Diode (Anode)

not connected

not connected

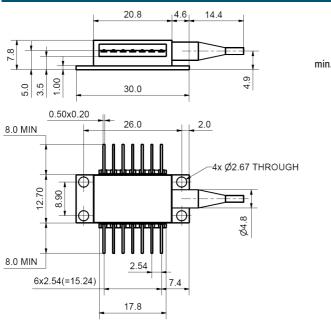
10

9

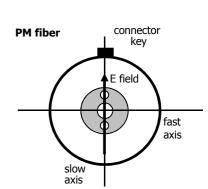
8

Package Drawings

Thermistor


not connected

not connected


5

6

7

recommended min. bending radius: 30 mm

slow axis of the PM fiber aligned to connector key

Z11-SPEC-BFY02-DFB-0000

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

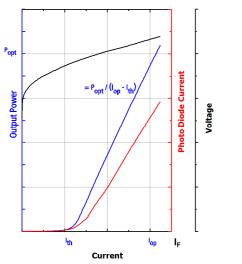
eagleyard Photonics GmbH

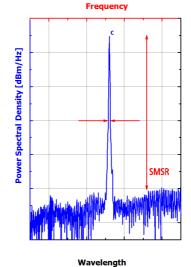
Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

20.11.2015

EYP-DFB-1060-00040-1500-BFY02-0002


Revision 0.70


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Ph: 203-401-8093 Email orders to: sales@xsoptix.com Fax orders to: 800-878-7282

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on a proper metal heat sinks will contribute to stable operation and a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

