

2017-03-02

EYP-DFB-1030-00500-1500-BFY02-0010

Revision 0.91

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
1030 nm DFB Laser	Spectroscopy
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Seed Laser
with PM Fiber and Angled Physical Contact (APC)	

Absolute Maximum Ratings

T _s T _C	°C °C	-40 -40		85
T _C	°C	-40		
				85
T _{LD}	°C	5		50
I _F	mA			190
I_{Fpeak}	mA			1600
V _R	V			2
I _{TEC}	А			1.8
V_{TEC}	V			3.2
	I _F I _{Fpeak} V _R I _{TEC}	$\begin{array}{c c} I_{F} & mA \\ \hline I_{Fpeak} & mA \\ \hline V_{R} & V \\ \hline I_{TEC} & A \end{array}$	$\begin{array}{c c} I_{F} & mA \\ \hline I_{Fpeak} & mA \\ \hline V_{R} & V \\ \hline I_{TEC} & A \end{array}$	I _F mA I _{Fpeak} mA V _R V I _{TEC} A

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	10		40
Forward Current (cw)	١ _F	mA			180
Forward Current (pulse mode)	I_{fpeak}	mA			1500

Pulse Mode Conditions

Parameter	Symbol	Unit	min	typ	max
Pulse Width	t _p	ns		10	
Pulse Repetition Rate	RR	kHz		200	
Duty Cycle	D.C.	%		0.2	

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments

measured by integrated Thermistor
under cw conditions
under Pulse Mode Conditions

Measurement Conditions / Comments

longer pulses, higher rep rates or duty cycles may damage the laser - other pulse conditions may be applicable but have not been specifically tested

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

Revision 0.91

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics (Pulse Mode	aracteristics (Pulse Mode Operation)			$T_{LD} = 25^{\circ}$ at BOL		
Parameter	Symbol	Unit	min	typ	max	
Center Wavelength	λ_{C}	nm	1028	1030	1032	
Peak Power	P_{peak}	mW		600		
Sidemode Supression Ratio	SMSR	dB	25			
Wavelength Chirp	I _{LD}	mA			200	
Pulse-to-Pulse Stability	ΔP_{peak}	%		3		

Characteristics (cw Operation)	T _{LD} = 25° at BOL					
Parameter	Symbol	Unit	min	typ	max	
Center Wavelength	λ _c	nm				
Linewidth (FWHM)	Δλ	MHz		2		
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06		
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003		
Sidemode Supression Ratio	SMSR	dB	30	45		
Laser Current @ Popt = 50 mW	I _{LD}	mA			180	
Slope Efficiency	η	W/A	0.2	0.4	0.7	
Threshold Current	I _{th}	mA			70	

Integration >1,000 pulses (infinite persistence) Measurement Conditions / Comments

Measurement Conditions / Comments tighter specification available on request

 $P_{opt} = 50 \text{ mW}$ $P_{opt} = 50 \text{ mW}$

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

2/5

2017-03-02

DNV-GL

Revision 0.91

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	1		20

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

$\begin{array}{l} \mbox{Measurement Conditions / Comments} \\ P_{opt} = 50 \mbox{ mW}, \mbox{ΔT} = 20 \mbox{ K} \\ P_{opt} = 50 \mbox{ mW}, \mbox{ΔT} = 20 \mbox{ K} \\ P_{opt} = 50 \mbox{ mW}, \mbox{ΔT} = 20 \mbox{ K} \\ P_{opt} = 50 \mbox{ mW}, \mbox{ΔT} = |\mbox{Tcase - TLD}| \end{array}$

Measurement Conditions / Comments

 $1/T = A + B(ln R) + C(ln R)^3$ T: temperature in Kelvin R: resistance at T in Ohm

 $R_{1}\,/\,R_{2}=e^{-\beta\,\left(1/T_{1}\,-\,1/T_{2}\right)}$ at $T_{LD}=\,0^{\circ}\,\ldots\,50^{\circ}$ C

 $T_{LD} = 25^{\circ} C$

Measurement Conditions / Comments

 $U_R = 5 V$

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) ⁻³
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	С			8.7755 x 10	-8

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

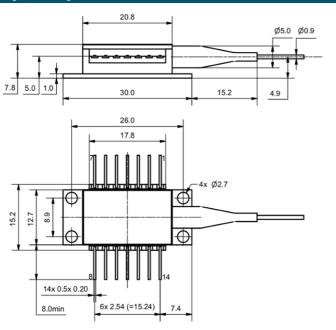
Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

2017-03-02

yard.com	ġ
yard.com	

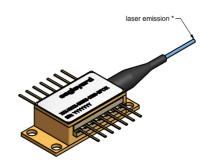
Revision 0.91

2017-03-02

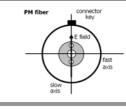


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment


1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected
Pins	are isolated from case unless noted otherwise.		

Package Drawings



Fiber and Connector Type

PM Fiber	900 / 125 / 5.5 $\mu m,$ UV/Polyester-elastomer Coating (l = 1 +/-0.1 m)
Connector	different variants available

Measurement Conditions / Comments

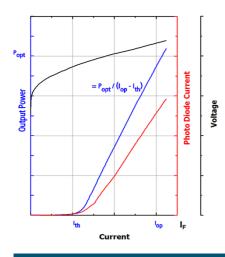
© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

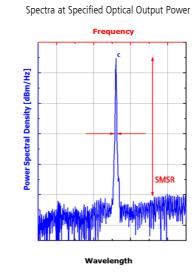
eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

AIZ-16-0222-1415

info@eagleyard.com www.eagleyard.com


4/5


Revision 0.91

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49, 30, 6392 4520 fax +49. 30. 6392 4529

info@eaglevard.com www.eagleyard.com

2017-03-02

5/5