

Revision 0.94

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
935 nm DFB Laser	Spectroscopy
with hermetic 8-Pin TO Package (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	
including Monitor Diode, Thermoelectric Cooler and Thermistor	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Operational Temperature at Laser Chip	T_{LD}	°C	5		45
Forward Current	I_{F}	mA			200
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			90
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V_{TEC}	V			3.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T_{case}	°C	-20		65
Operational Temperature at Laser Chip	T_LD	°C	15		40
Forward Current	I _F	mA			180
Output Power	P _{opt}	mW	20		80

Measurement Conditions / Comments	
measured by integrated Thermistor	

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	934	935	937
Linewidth (FWHM)	$\Delta\lambda$	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	45	

Measurement Conditions / Comments
see images on page 4
$P_{opt} = 80 \text{ mW}$

Revision 0.94

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25°	at BOL				cont'd
Parameter	Symbol	Unit	min	tvn	max
	- Jyllibol		1111111	typ	
Laser Current @ P _{opt} = 80 mW	I _{LD}	mA			180
Slope Efficiency	η	W/A	0.5	0.8	1.0
Threshold Current	I _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Degree of Polarization	DOP	%		90	

Measurement Conditions / Comments
parallel to short axis of the housing (see p. 3)
parallel to long axis of the housing (see p. 3)
80 mW; E field parallel to long axis of housing

Symbol	Unit	min	typ	max
I _{mon} / P _{opt}	μΑ/mW	1		20
		Symbol Unit		

Meası	urement Conditions / Comments
$J_R =$	5 V

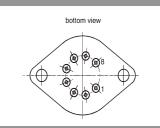
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.5	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 80 \text{ mW}, \Delta T = T \text{case} - T \text{LD} $

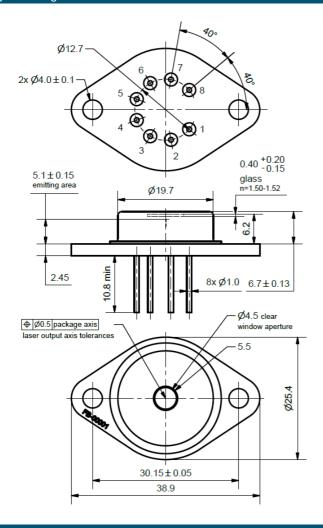
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А		1.1293 x 10 ⁻³		
Steinhart & Hart Coefficient B	В		2.3410 x 10 ⁻⁴		
Steinhart & Hart Coefficient C	C		8.7755 x 10 ⁻⁸		

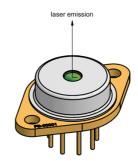
Measurement Conditions / Comments						
$T_{LD} = 25^{\circ} C$						
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C					
$1/T = A + B(\ln R) + C(\ln R)^3$						
T: temperature in Kelvin						
R: resistance at T in Ohm						

Thermistor (Standard NTC Type)



Revision 0.94


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

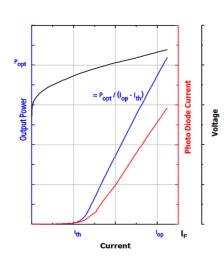


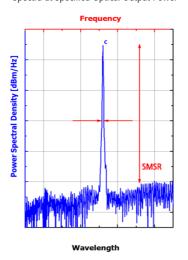
Pin Assignment							
1	Thermoelectric Cooler (+)	5	Laser Diode Anode				
2	Thermistor	6	Monitor Diode Anode				
3	Thermistor	7	Photo Diode Cathode				
4	Laser Diode Cathode	8	Thermoelectric Cooler (-)				
All 8 pins are isolated from case							

Package Drawings

AIZ-16-311-1543-B

Revision 0.94


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser



Typical Measurement Results

Output Power vs. Current

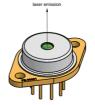
Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

INVISIBLE LASER RADIATION
AVOID EVE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 935 nm
MAX. OUTPUT POWER 90 mW

