

Revision 0.90

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
852 nm DFB Laser	Spectroscopy (Cs D2 line)
with hermetic 14 Pin-Butterfly Housing (RoHS compliant)	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	Atomic Clock
with integrated Beam Collimation	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-40		85
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			110
TEC Current	I _{TEC}	Α			1.1
TEC Voltage	V_{TEC}	V			2.8

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	$T_{\rm case}$	°C	-20		65
Operational Temperature at Laser Chip	T_{LD}	°C	15		45
Forward Current	I _F	mA			180
Output Power	P _{opt}	mW	20		100

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at $T_{LD} = 25^{\circ}$ at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Target Wavelength	λ_{T}	nm		852.347	
Linewidth (FWHM)	Δλ	MHz		0.6	1
Mode-hop free Tuning Range	$\Delta \lambda_{\text{tune}}$	pm	25		
Sidemode Supression Ratio	SMSR	dB	30	50	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	

Measurement Conditions / Comments
see images on page 4

reached within T_{LD} = 15 ° ... 45° C at 100 mW > 10 GHz, at target wavelength P_{opt} = 100 mW

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

Revision 0.90

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T _{LD} = 25° at BOL					
Symbol	Unit	min	typ	max	
I _{LD}	mA			180	
η	W/A	0.6	0.8	1.0	
I_{th}	mA			70	
$\Theta_{ }$	0		0.1		
Θ_{\perp}	0		0.1		
d	mm		1.0	1.2	
d_{\bot}	mm		0.8	1.2	
DOP	%		90		
	$\begin{array}{c} \text{Symbol} \\ \\ I_{\text{LD}} \\ \\ \eta \\ \\ I_{\text{th}} \\ \\ \Theta_{ } \\ \\ \Theta_{\perp} \\ \\ d_{ } \\ \\ d_{\perp} \end{array}$	$ \begin{array}{c c} \text{Symbol} & \text{Unit} \\ \hline \\ I_{\text{LD}} & \text{mA} \\ \hline \\ \eta & \text{W / A} \\ \hline \\ I_{\text{th}} & \text{mA} \\ \hline \\ \Theta_{ } & \circ \\ \hline \\ \Theta_{\perp} & \circ \\ \hline \\ d_{ } & \text{mm} \\ \hline \\ d_{\perp} & \text{mm} \\ \end{array} $	$\begin{array}{c cccc} \text{Symbol} & \text{Unit} & \text{min} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

parallel to the base plate of the housing (see p. 3)
perpendicular to base plate of the housing (see p. 3)
parallel to the base plate of the housing (see p. 3)
perpendicular to base plate of the housing (see p. 3)
$P_{\rm opt} = 100$ mW; E field parallel to the base plate

Measurement Conditions / Comments

Symbol	Unit	min	typ	max
I _{mon} / P _{opt}	μA/mW	0.5		10
	-, -	Symbol Unit I _{mon} / P _{opt} µA/mW	.,	., ., ., ., ., ., ., ., ., ., ., ., ., .

Meas	urement Conditions / Comments
$J_R =$	5 V

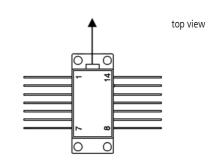
I nermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		1.3	
Power Dissipation (total loss at case)	P _{loss}	W		0.4	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments
$P_{opt} = 100 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 100 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 100 \text{ mW}, \Delta T = 20 \text{ K}$
$P_{opt} = 100 \text{ mW, } \Delta T = T \text{case - TLD} $
$P_{opt} = 100 \text{ mW}, \Delta T = T \text{case} - T \text{LD} $

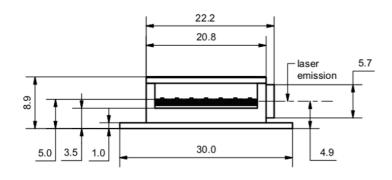
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10	-3
Steinhart & Hart Coefficient B	В			2.3410 x 10	-4
Steinhart & Hart Coefficient C	C		;	3.7755 x 10	-8

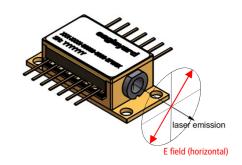
Thermistor (Standard NTC Type)

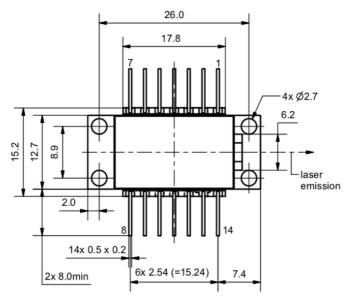
Measurement Conditions / Comments			
$T_{LD} = 25^{\circ} C$			
$R_1 / R_2 = e^{ \beta (1/T_1 - 1/T_2)} $ at $T_{LD} =$	0° 50° C		
$1/T = A + B(\ln R) + C(\ln R)^3$			
T: temperature in Kelvin			
R: resistance at T in Ohm			


Revision 0.90

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

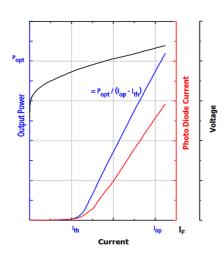



A:-		
Assig	ınm	ent

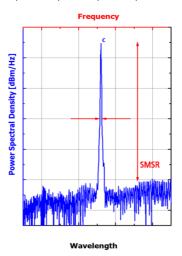

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)		
2	Thermistor	13	Case		
3	Photodiode (Anode)	12	not connected		
4	Photodiode (Cathode)	11	Laser Diode (Cathode)		
5	Thermistor	10	Laser Diode (Anode)		
6	not connected	9	not connected		
7	not connected	8	not connected		
All 14 pins are isolated from case.					

Package Drawings

AIZ-15-0729-0947

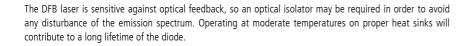

Revision 0.90

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

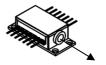


Typical Measurement Results

Output Power vs. Current


Spectra at Specified Optical Output Power

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

