

We focus on power.

Revision

Revision 0.52

18.06.2015

page 1 from 6

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

General Product Information

Product	Application
852 nm DFB Laser with hermetic Butterfly Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
Collimated beam	THz Generation
ROHS compliant	Cs Spectroscopy (Variant0005)

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-40		85
Operational Temperature at Laser Chip	T_{LD}	°C	10		50
Forward Current	I _F	mA			200
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	mW			110
TEC Current	I _{TEC}	А			1.1
TEC Voltage	V_{TEC}	V			2.8

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	-20		65
Operational Temperature at Laser Chip	T_{LD}	°C	15		40
Forward Current	I _F	mA			180
Output Power	P_{opt}	mW	20		100

Measurement Conditions / Comments
measured by integrated Thermistor

Characteristics at T_{LD} = 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	851	852	853
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ I _F = 180 mA	P_{opt}	mW	100		

Measurement Conditions / Comments
see images on page 4

We focus on power.

Revision 0.52

18.06.2015

page 2 from 6

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

Characteristics at T _{amb} 25 °C at Begin Of Life					cont'd	
Parameter	Symbol	Unit	min	typ	max	
Slope Efficiency	η	W/A	0.6	0.8	1.0	
Threshold Current	I _{th}	mA			70	
Divergence parallel (1/e²)	$\Theta_{ }$	0		0.1		
Divergence perpendicular (1/e²)	Θ_{\perp}	0		0.1		
Beam Diameter (1/e²)	d	mm		1.0	1.2	
Beam Diameter (1/e²)	d_\perp	mm		0.8	1.2	
Degree of Polarization	DOP	%		90		
Sidemode Supression Ratio	SMSR	dB	30	50		
Mode-hop free Operating Range (SMSR :	> 30 dB)					
Variant 2	T_{LD}	° C	15		40	
	Pont	mW	20		100	

 λ_{C}

 P_{opt}

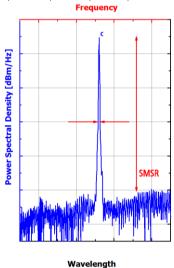
nm

mW

Measurement Conditions / Comments				
parallel to the base plate of the housing (see p. 3)				
perpendicular to base plate of the housing (see p. 3)				
parallel to the base plate of the housing (see p. 3)				
perpendicular to base plate of the housing (see p. 3)				
P_{opt} = 100 mW; E field parallel to the base plate				
P _{opt} = 100 mW				
see order code scheme on p. 5				
wavelength reached within T_{LD} = 15 ° and 45° C				

Typical Measurement Results

Output Power vs. Current


Variant 5

Spectra at Specified Optical Output Power

852.347

100

Pictures and the illustrative graphs (on the left hand side) provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract.

We focus on power.

Revision 0.52

18.06.2015

page 3 from 6

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

	itor	

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} /P _{opt}	μA/mW		tbd	

Measurement Conditions / Comments
Reverse Voltage $U_{R MD} = 5 V$

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U_TEC	V		0.8	
Power Dissipation (total loss at case)	P _{loss}	W		0.4	
Temperature Difference	ΔΤ	K			50

Measurement Conditions / Comments				
$P_{opt} = 100 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 100 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 100 \text{ mW},$	$\Delta T = 20 \text{ K}$			
$P_{opt} = 100 \text{ mW},$	$\Delta T = I T_{case} - T_{LD} I$			

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3976	

Measurement Conditions / Comments			

We focus on power.

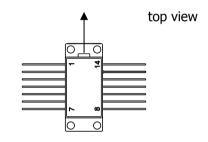
Revision 0.52

18.06.2015

page 4 from 6

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

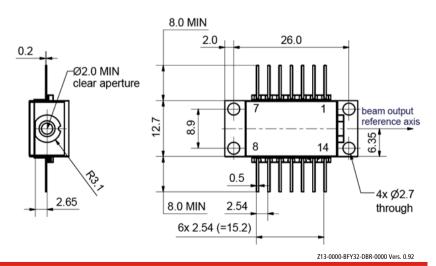

Package Dimensions

Parameter	Symbol	Unit	min	typ	max
Emission Plane	h _{EP}	mm		4.9	


Measurement Conditions / Comments

Package Pinout

1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	Photodiode (Anode)	12	not connected
4	Photodiode (Cathode)	11	Laser Diode (Cathode)
5	Thermistor	10	Laser Diode (Anode)
6	not connected	9	not connected
7	not connected	8	not connected



Package Drawings

Polarization:

E field parallel to base plate

We focus on power.

Revision 0.52

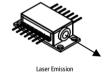
18.06.2015

page 5 from 6

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

Order Code Scheme


Mode-hop free Operating Range (Minimum Side Mode Suppression Ratio > 30 dB)

P _{opt} = 20 100 mW;	T _{LD} = 15 40 ° C	(Variant 2)
$P_{opt} = 100 \text{ mW};$	$\lambda_c \! = 852.347 \; \text{nm}$	(Variant 5)

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

Operating at moderate temperatures on proper heat sinks willI contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282

