EYP-DFB-0785-00100-1500-TOC03-000x

We focus on power.

page 1 from 5

14.12.2011

DFB/DBR

Revision 0.92

DISTRIBUTED FEEDBACK LASER GaAs Semiconductor Laser Diode

with integrated grating structure

General Product Information		
Product	Application	
785 nm DFB Laser with hermetic Butterfly Housing	Spectroscopy	
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology	

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device.

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			180
Reverse Voltage	V _R	V			2
Output Power	Popt	mW			110
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		45
Forward Current	I _F	mA			160
Output Power	P _{opt}	mW	20		100

Characteristics at T_{LD} = 25 °C at Begin Of Life

eagleyard Photonics GmbH

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	784	785	786
Spectral Width (FWHM)	Δν	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ I _F = 160 mA	P _{opt}	mW	100		
Slope Efficiency	S	W / A	0.6	0.8	1.0

Measurement Conditions / Comments measured by integrated Thermistor

Measurement Conditions / Comments

see images on page 4

© All rights reserved by eagleyard Photonics GmbH. This preliminary data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com

EYP-DFB-0785-00100-1500-TOC03-000x

We focus on power.

DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode

Revision 0.92	14.12.2011	page 2 from 5
RWE/RWL BAL	DFB/DBR	TPL/TPA

Characteristics at T _{amb}	25 °C at E	Begin C	of Life		cont'd
Parameter	Symbol	Unit	min	typ	max
Threshold Current	l _{th}	mA			70
Divergence parallel (FWHM)	$\Theta_{ }$	0		8	
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21	
Sidemode Supression Ratio	SMSR	dB		50	
Mode-hop free Operating Range (SMSR $>$	30 dB)				
 Variant 0 	T _{LD}	° C		25	
	P _{opt}	mW		100	
Variant 1	T _{LD}	°C		25	
	P _{opt}	mW	20		100
Variant 2	T _{LD}	° C	15		45
	P _{opt}	mW	20		50
Polarization Extinction Ratio	PER	dB		20	

Measurement Conditions / Comments

parallel to short axis of the housing (see p. 3)
parallel to long axis of the housing (see p. 3)
$P_{opt} = 100 \text{ mW}$
Temperature at Laser Chip

P_{opt} = 100 mW; E field parallel to long axis of housing

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μΑ / mW	0.5		10
Reverse Voltage Monitor Diode	U _{R MD}	V	3		5

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3892	

Measurement Conditions / Comments

 $U_R = 5 V$, target values

Measurement Conditions / Comments				
$P_{opt} = 100 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 100 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 100 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 100 \text{ mW}, \ \Delta T = I T_{case} - T_{LD} I$				

Measurement Conditions / Comments

© All rights reserved by eagleyard Photonics GmbH. This preliminary data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed. eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

EYP-DFB-0785-00100-1500-TOC03-000x

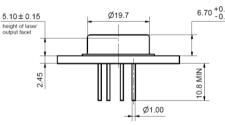
We focus on power.

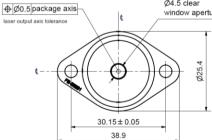
page 3 from 5

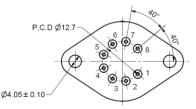
14.12.2011

DFB/DBR

GaAs Semiconductor Laser Diode

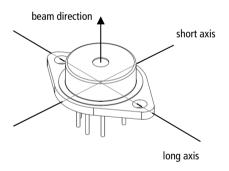

Package Dimensions


Parameter	Symbol	Unit	min	typ	max
Height of Laser Output above Header	HL	mm		5.1	
Housing Dimension	l x w x h	mm ³	38	.9 x 25.4 x 9	9.3
Pin Length	L	mm	10.8		


Package Pinout

1	Thermoelectric Cooler (+)	5	Laser Diode (Anode)
2	Thermistor	6	Photo Diode (Anode)
3	Thermistor	7	Photo Diode (Cathode)
4	Laser Diode (Cathode)	8	Thernoelectric Cooler (-)

Package Drawings


Z11-SPEC-TOC03-DFB-0000

Measurement Conditions / Comments

Revision 0.92

bottom view ۲ 6 ୍ଦ୍ଧି 🔊 Ó 6 jø bø

Polarization: E field parallel to long axis of housing

hermetically sealed Package: Leak Rate $< 5 \cdot 10^{-8}$ atm.cc./s acc. MIL-STD-883E

© All rights reserved by eagleyard Photonics GmbH. This preliminary data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed. eagleyard Photonics GmbH Rudower Chaussee 29 fon +49. 30. 6392 4520 info@eagleyard.com 12489 Berlin GERMANY fax +49. 30. 6392 4529 www.eagleyard.com

GL

DISTRIBUTED FEEDBACK LASER

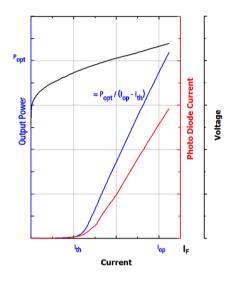
with integrated grating structure

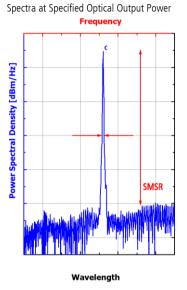
6.70 +0.10 Ø4.5 clear window aperture

EYP-DFB-0785-00100-1500-TOC03-000x

We focus on power.

DISTRIBUTED FEEDBACK LASER


GaAs Semiconductor Laser Diode


with integrated grating structure

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: <u>sales@xsoptix.com</u> Fax orders to: 800-878-7282

EYP-DFB-0785-00100-1500-TOC03-000x

We focus on power.

page 5 from 5

14.12.2011

DFB/DBR

DISTRIBUTED FEEDBACK LASER
GaAs Semiconductor Laser Diode
with integrated grating structure

Order Code Scheme

Mode-hop free Tuning Range (Minimum Side Mode Suppression Ratio > 30 dB)					
$P_{opt} = 100 \text{ mW};$	$T_{LD} = 25^{\circ}$	(Variant 0)			
$P_{opt} = 20 \ \dots \ 100$ mW;	$T_{LD} = 25^{\circ}$	(Variant 1)			
Popt = 20 100 mW;	$T_{LD}=15^\circ\ldots45^\circC$	(Variant 2)			

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

EYP-DFB-0785-00100-1500-TOC03- 0 0 0 x 0 1 2

Revision 0.92