DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure


PRELIMINARY SPECIFICATION

DFB/DBR Laser

EYP-DFB-0785-00040-1500-BFY02-0000

	_		_	
General	Proc	luct In	forma	tion

Product	Application
785 nm DFB Laser with Butterfly Housing	Spectroscopy
Monitor Diode, Thermoelectric Cooler and Thermistor	Metrology
PM Fiber (900 / 125 / 5.5 µm, UV/Polyamide Coating)	
FC/APC connector (narrow key / 2mm)	

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Forward Current	I _F	mA			300
Reverse Voltage	V_R	V			0
Output Power	Popt	mW			170

Stress in excess of the Absolute Maximum
Ratings can cause permanent damage to the
device. Operation at the Absolute Maximum
Rating for extended periods of time can adversely
affect the device realibility and may lead to
reduced operational life.

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Forward Current	I _F	mA			280
Output Power	P_{opt}	mW			40

Characteristics at T_{amb} 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	784	785	786
Spectral Width (FWHM)	Δν	MHz		2	10
Temperature Coefficient of Wavelength	$d\lambda$ / dT	nm / K		0.06	
Temperature Coefficient of Current	$d\lambda/dI$	nm / mA		0.003	
Output Power @ I _{op} max	P _{opt}	mW	40		
Slope Efficiency	S	W / A	0.15	0.3	0.5

Measurement Conditions / Comments
see images on page 4
measured in interferometric setup
ex fiber

PRELIMINARY SPECIFICATION

DFB/DBR Laser

EYP-DFB-0785-00040-1500-BFY02-0000

Characteristics at T _{amb} 25 °C at Begin Of Life							
Parameter	Symbol	Unit	min	typ	max		
Threshold Current	I _{th}	mA		60	80		
Operational Current @ Popt min	I _{op}	mA		240	280		
Sidemode Supression Ratio	SMSR	dB	30	45			
Cavity Length	L	μm		1500			
Polarization				TM			
Polarization Extinction Ratio	PER	dB	20				
Spatial Mode (transversal)			TEM ₀₀				
Spectral Mode (longitudinal)	Single Mode						

Measur	ement C	onditio	ns / Comi	ments	
parallel	to key				
target v	alue, to b	oe verifi	ed		
Fundam	ental Mo	ode			

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA / mW		t.b.d.	
Reverse Voltage Monitor Diode	$U_{R\ MD}$	V		t.b.d.	
Monitor Linearity	Lin _{MD}	%		t.b.d.	

Measurement Conditions / Comments
U _R = 5 V, target values
$P_{opt} = 10 \dots 40$ mW, $U_R = 5 V$

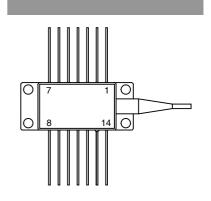
Thermoelectric Cooler					
	Symbol	Unit	min	typ	max
Current	I	А			1.8
Voltage	U	V			4.5
Thermal Load	Q_c	W			3.2
Temperature Difference	dT	K			50

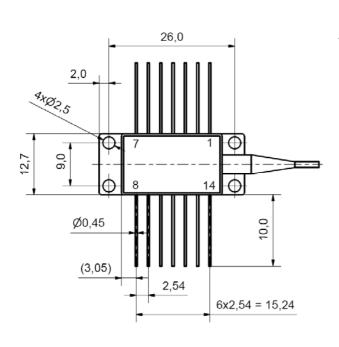
$T_{chip}=25^{\circ}C$		

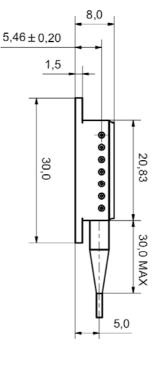
	Symbol	Unit	min	typ	max
Resistance	R	kOhm		10	
Beta Coefficient	β			3892	

Thermistor (Standard NTC Type)

PRELIMINARY SPECIFICATION

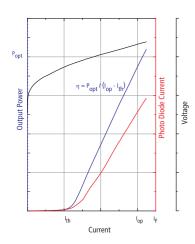

Package Dimensions


DFB/DBR Laser

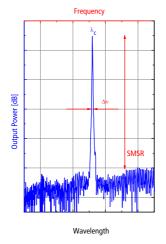

EYP-DFB-0785-00040-1500-BFY02-0000

Symbol	Unit	min	typ	max
I	mm		5.0	
l x w x h	mm ³		30 x 12.7 x 8	
L	m		1	
	ı	I mm Ixwxh mm³	I mm Ixwxh mm³	I mm 5.0 I x w x h mm ³ 30 x 12.7 x 8

Package Pinout		
Thermoelectric Cooler	1 (+)	14 (-)
Thermistor	2	5
Photodiode	3 (Anode)	4 (Cathode)
Laser Diode	10 (Anode)	11 (Cathode)
Case	13	
nc	6	7
nc	8	9
nc	12	


PRELIMINARY SPECIFICATION

DFB/DBR Laser


EYP-DFB-0785-00040-1500-BFY02-0000

Typical Measurement Results

Output Power vs. Current

Spectra at Specified Optical Output Power

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com Fax orders to: 800-878-7282

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpackaging, Installation and Laser Safety

Each laser diode will come with an individual data sheet verifying the parameters given in this document.

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on propper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase thread to the human eye.

