

2018-01-19

EYP-DFB-0767-00050-1500-TOC03-0000

Revision 1.03

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

General Product Information

Product	Application
767 nm DFB Laser	Spectroscopy
with hermetic 8 Pin TO Package	Metrology
including Monitor Diode, Thermoelectric Cooler and Thermistor	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	°C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Operational Temperature at Laser Chip	T _{LD}	°C	10		50
Forward Current	I _F	mA			140
Reverse Voltage	V _R	V			2
Output Power	P _{opt}	mW			60
TEC Current	I _{TEC}	А			1.8
TEC Voltage	V _{TEC}	V			3.2

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	-20		65
Operational Temperature at Laser Chip	T _{LD}	°C	15		35
Forward Current	l _F	mA			130
Output Power	P _{opt}	mW	10		50

Characteristics at T_{LD} = 25° at BOL

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ _c	nm	766	767	768
Linewidth (FWHM)	Δλ	MHz		2	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dI	nm / mA		0.003	
Sidemode Supression Ratio	SMSR	dB	30	50	

Measurement Conditions / Comments Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Measurement Conditions / Comments see images on page 4 P_{opt} = 50 mW

Measurement Conditions / Comments

measured by integrated Thermistor

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com

EYP-DFB-0767-00050-1500-TOC03-0000

Revision 1.03

SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Characteristics at T_{LD} = 25° at BOL cont'd						
Parameter	Symbol	Unit	min	typ	max	
Laser Current @ $P_{opt} = 50 \text{ mW}$	I _{LD}	mA			130	
Slope Efficiency	η	W / A		0.9		
Threshold Current	l _{th}	mA			70	
Divergence parallel (FWHM)	$\Theta_{ }$	٥		8		
Divergence perpendicular (FWHM)	Θ_{\perp}	0		21		
Degree of Polarization	DOP	%		60		

Measurement Conditions / Comments				
parallel to short axis of the housing (see p. 3)				
parallel to long axis of the housing (see p. 3)				
50 mW; E field parallel to long axis of housing				

Monitor Diode

Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	µA/mW	0.5		40

Thermoelectric Cooler

Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		0.4	
Voltage	U _{TEC}	V		0.8	
Power Dissipation (total loss at case)	Ploss	W		0.5	
Temperature Difference	ΔΤ	К			50

Thermistor (Standard NTC Type)

Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) ⁻³
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	С			8.7755 x 10) -8

Measurement Conditions / Comments $U_R = 5 V$

Measurement Conditions / Comments				
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 50 \text{ mW}, \Delta T = 20 \text{ K}$				
$P_{opt} = 50 \text{ mW}, \Delta T = Tcase - TLD $				

_{.D} = 25° C
$_1$ / $R_2 = e^{~\beta~(1/T_1 + ~1/T_2)}~$ at $T_{LD} = ~0^\circ~\ldots~50^\circ~C$
$T = A + B(\ln R) + C(\ln R)^3$
temperature in Kelvin
resistance at T in Ohm

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

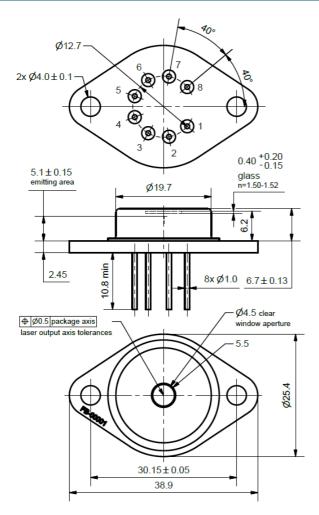
eagleyard Photonics GmbH

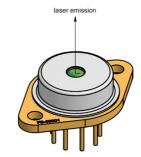
Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com

2018-01-19

EYP-DFB-0767-00050-1500-TOC03-0000

Revision 1.03


2018-01-19


SINGLE FREQUENCY LASER DIODES Distributed Feedback Laser

Pin Assignment		
1 Thermoelectric Cooler (+)	5 Laser Diode Anode	bottom view
2 Thermistor	6 Monitor Diode Anode	
3 Thermistor	7 Photo Diode Cathode	
4 Laser Diode Cathode	8 Thermoelectric Cooler (-)	
All 8 pins are isolated from case.		

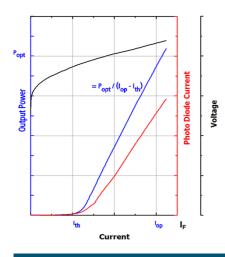
Package Drawings

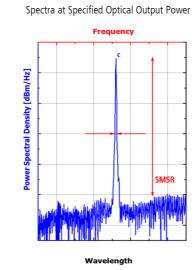
AIZ-16-311-1543-B

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com


EYP-DFB-0767-00050-1500-TOC03-0000


Revision 1.03

SINGLE FREQUENCY LASER DIODES **Distributed Feedback Laser**

Typical Measurement Results

Output Power vs. Current

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB laser is sensitive against optical feedback, so an optical isolator may be required in order to avoid any disturbance of the emission spectrum. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

Avoid direct and/or indirect exposure to the free running beam. Collimating and focussing the free running beam with optics as common in optical instruments will increase threat to the human eye.

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

DANGER

© All rights reserved by eagleyard Photonics GmbH. This data sheet will be electronically administered and is subject to change without notice. Uncontrolled copy when printed

eagleyard Photonics GmbH

Rudower Chaussee 29 12489 Berlin GERMANY fon +49, 30, 6392 4520 fax +49. 30. 6392 4529

info@eaglevard.com www.eagleyard.com

2018-01-19