DISTRIBUTED FEEDBACK LASER

GaAs Semiconductor Laser Diode with integrated grating structure

PRELIMINARY SPECIFICATION

DBR Laser

EYP-DBR-1063-00100-2000-SOT02-0000

Product	Application
1063 nm DBR Laser with TO Housing	Spectroscopy
Monitor Diode	Metrology

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operational Temperature at Case	T_{C}	°C	-20		75
Forward Current	I _F	mA			250
Reverse Voltage	V_R	V			0
Output Power	P_{opt}	mW			120

Stress in excess of the Absolute Maximum Ratings can cause permanent damage to the device. Operation at the Absolute Maximum Rating for extended periods of time can adversely affect the device realibility and may lead to reduced operational life.

		Conditions

	Symbol	Unit	min	typ	max
Temperature at Case	T_{Chip}	° C	15		40
Forward Current	I_{F}	mA			230
Output Power	$P_{\rm opt}$	mW	10		100

total output measured with integrated sphere

Characteristics at T_{amb} 25 °C at Begin Of Life

Parameter	Symbol	Unit	min	typ	max
Center Wavelength	λ_{C}	nm	1061	1063	1064
Spectral Width (FWHM)	Δν	MHz		2	10
Temperature Coefficient of Wavelength	$d\lambda$ / dT	nm / K		0.06	
Current Coefficient of Wavelength	dλ / dl	nm / mA		0.003	
Output Power @ $I_F = 230 \text{ mA}$	P _{opt}	mW	100		
Slope Efficiency	S	W/A	0.6	0.8	1.0

Measurement Conditions / Comments				
see images on page 4				
total output measured with integrated sphere				

PRELIMINARY SPECIFICATION

DBR Laser

EYP-DBR-1063-00100-2000-SOT02-0000

Characteristics at T_{amb} 25 °C at Begin Of Life

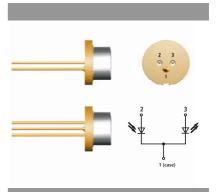
Parameter	Symbol	Unit	min	typ	max
Threshold Current	I _{th}	mA			70
Operational Current @ P _{opt} = 100 mW	l _{op}	mA			230
Sidemode Supression Ratio	SMSR	dB		30	
Cavity Length	L	μm		2000	
Divergence parallel	$\Theta_{ }$	0		10	
Divergence perpendicular	Θ_{\perp}	0		33	
Polarization				TE	
Spatial Mode (transversal)				TEM ₀₀	
Spectral Mode (longitudinal)				Single Mode	

Measurement Conditions / Comments					
P _{opt} = 100 mW					
E field parallel to Pin 2 - Pin 3 - plane					
fundamental mode					

Monitor Diode					
Parameter	Symbol	Unit	min	typ	max
Monitor Detector Responsivity	I _{mon} / P _{opt}	μA / mW	1		10
Reverse Voltage Monitor Diode	$U_R\ MD$	V	3		5
Monitor Linearity	Lin _{MD}	%	-20		+20

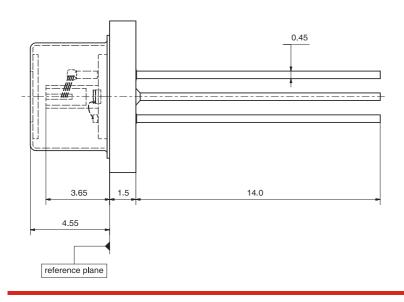
Measurement Conditions / Comments					
$U_R = 5 \text{ V, target values}$					
$P_{opt} = 10 \dots 100$ mW, $U_R = 5 V$					

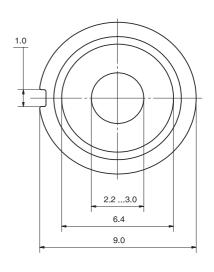
PRELIMINARY SPECIFICATION


DBR Laser

EYP-DBR-1063-00100-2000-SOT02-0000

Package Diffier Isloris					
	Symbol	Unit	min	typ	max
Height of Emission Plane	d _{EP}	mm	3.50	3.65	3.70
Excentricity of Emission Center	R	mm			0.12

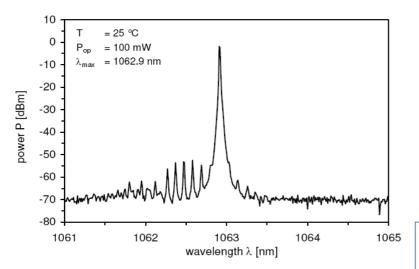

reference plane: top side of TO header
reference: center of outer diameter of header


Package Pinout	M-Type	
Ground	1	
Photo Diode (+)	2	
Laser (+)	3	

Package Drawings

Pin Length

RWE/RWL BAL DFB/DBR TPL/TPA


PRELIMINARY SPECIFICATION

DBR Laser

EYP-DBR-1063-00100-2000-SOT02-0000

Typical Measurement Results

Spectrum

Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DFB diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on propper heat sinks willl contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase thread to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

omplies with 21 CFR 1040.10 and 1040.4

