# EYP-DBR-0633-00010-2000-TOC03-0005



#### We focus on power.

page 1 from 5

26.07.2013

DFB/DBR

Revision 0.51

| DISTRIBUTED BRAGG REFLECTOR LASER |
|-----------------------------------|
| GaAs Semiconductor Laser Diode    |
| with integrated grating structure |



| Product                                              | Application                |
|------------------------------------------------------|----------------------------|
| 633 nm DBR Laser with hermetic TO Housing            | Replacement of HeNe-Lasers |
| Monitor Diode, Thermoelectric Cooler and Thermistor  | Metrology                  |
| Emission exactly at HeNe laser wavelength 632.991 nm |                            |
|                                                      |                            |

#### Absolute Maximum Ratings

| Symbol           | Unit                                                                                                                          | min                                                                                                                                               | typ                                                    | max                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|
| Ts               | °C                                                                                                                            | -40                                                                                                                                               |                                                        | 85                                                                              |
| T <sub>C</sub>   | °C                                                                                                                            | -20                                                                                                                                               |                                                        | 75                                                                              |
| T <sub>LD</sub>  | °C                                                                                                                            | -5                                                                                                                                                |                                                        | 30                                                                              |
| I <sub>F</sub>   | mA                                                                                                                            |                                                                                                                                                   |                                                        | 200                                                                             |
| V <sub>R</sub>   | V                                                                                                                             |                                                                                                                                                   |                                                        | 2                                                                               |
| P <sub>opt</sub> | mW                                                                                                                            |                                                                                                                                                   |                                                        | 12                                                                              |
| I <sub>TEC</sub> | А                                                                                                                             |                                                                                                                                                   |                                                        | 1.8                                                                             |
| V <sub>TEC</sub> | V                                                                                                                             |                                                                                                                                                   |                                                        | 3.2                                                                             |
|                  | T <sub>s</sub><br>T <sub>c</sub><br>T <sub>LD</sub><br>I <sub>F</sub><br>V <sub>R</sub><br>V <sub>R</sub><br>I <sub>TEC</sub> | $\begin{array}{c c} T_{S} & \circ C \\ T_{C} & \circ C \\ T_{LD} & \circ C \\ I_{F} & mA \\ V_{R} & V \\ P_{opt} & mW \\ I_{TEC} & A \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Ts °C -40   T_c °C -20 $T_{LD}$ °C -5 $I_F$ mA $V_R$ V $P_{opt}$ mW $I_{TEC}$ A |

#### **Recommended Operational Conditions**

|                                       | Symbol          | Unit | min | typ | max |
|---------------------------------------|-----------------|------|-----|-----|-----|
| Operational Temperature at Case       | T <sub>c</sub>  | °C   | 0   |     | 50  |
| Operational Temperature at Laser Chip | T <sub>LD</sub> | °C   | 0   |     | 20  |
| Forward Current                       | I <sub>F</sub>  | mA   |     | 140 | 180 |
| Output Power                          | Popt            | mW   | 2   |     | 10  |

#### Characteristics at Begin of Life

eagleyard Photonics GmbH

| Parameter                              | Symbol           | Unit    | min | typ     | max |
|----------------------------------------|------------------|---------|-----|---------|-----|
| Center Wavelength                      | $\lambda_{C}$    | nm      |     | 632.991 |     |
| Spectral Width (FWHM)                  | Δν               | MHz     |     | 1       |     |
| Temperature Coefficient of Wavelength  | dλ / dT          | nm / K  |     | 0.045   |     |
| Current Coefficient of Wavelength      | dλ / dl          | nm / mA |     | 0.001   |     |
| Output Power @ I <sub>F</sub> = 180 mA | P <sub>opt</sub> | mW      | 10  |         |     |



Stress in excess of one of the Absolute Maximum Ratings can cause permanent damage to the device.

#### Measurement Conditions / Comments

measured by integrated Thermistor

#### Measurement Conditions / Comments

reached at one temperature  $T_{LD}$  between 0 and 20 ° C  $\lambda_C = 632.991$  nm,  $P_{opt}$  =10 mW

 $\lambda_{C}=632.991~\text{nm}$ 

© All rights reserved by eagleyard Photonics GmbH. This target specification will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

Rudower Chaussee 29 12489 Berlin GERMANY fon +49. 30. 6392 4520 fax +49. 30. 6392 4529 info@eagleyard.com www.eagleyard.com



# EYP-DBR-0633-00010-2000-TOC03-0005



#### We focus on power.

page 2 from 5

26.07.2013

DFB/DBR

Revision 0.51

**DISTRIBUTED BRAGG REFLECTOR LASER** GaAs Semiconductor Laser Diode

with integrated grating structure

### Characteristics at T<sub>LD</sub> = 15°C at Begin of Life

| Parameter                                          | Symbol           | Unit  | min  | typ | max |
|----------------------------------------------------|------------------|-------|------|-----|-----|
| Slope Efficiency                                   | η                | W / A | 0.15 | 0.4 |     |
| Threshold Current                                  | I <sub>th</sub>  | mA    |      | 80  |     |
| Divergence parallel (FWHM)                         | $\Theta_{  }$    | 0     |      | 6   |     |
| Divergence perpendicular (FWHM)                    | $\Theta_{\perp}$ | 0     |      | 31  |     |
| Sidemode Supression Ratio                          | SMSR             | dB    | 30   |     |     |
| Degree of Polarization @ $P_{opt} = 10 \text{ mW}$ | DOP              | dB    |      | 10  |     |
|                                                    |                  |       |      |     |     |

| Measurement Conditions / Comments                   |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|
|                                                     |  |  |  |  |
|                                                     |  |  |  |  |
| parallel to short axis of housing (see p. 3)        |  |  |  |  |
| parallel to long axis of housing (see p. 3)         |  |  |  |  |
|                                                     |  |  |  |  |
| E field parallel to long axis of housing (see p. 3) |  |  |  |  |

#### **Monitor Diode**

| Parameter                     | Symbol                              | Unit    | min | typ | max |
|-------------------------------|-------------------------------------|---------|-----|-----|-----|
| Monitor Detector Responsivity | I <sub>mon</sub> / P <sub>opt</sub> | µA / mW | 10  |     | 200 |
| Reverse Voltage Monitor Diode | U <sub>R MD</sub>                   | V       | 3   |     | 5   |

#### Thermoelectric Cooler

| Parameter                              | Symbol           | Unit | min | typ | max |
|----------------------------------------|------------------|------|-----|-----|-----|
| Current                                | I <sub>TEC</sub> | А    |     | 0.4 |     |
| Voltage                                | U <sub>TEC</sub> | V    |     | 0.8 |     |
| Power Dissipation (total loss at case) | Ploss            | W    |     | 0.5 |     |
| Temperature Difference                 | ΔΤ               | К    |     |     | 50  |

#### Thermistor (Standard NTC Type)

| Parameter        | Symbol | Unit | min | typ  | max |
|------------------|--------|------|-----|------|-----|
| Resistance       | R      | kΩ   |     | 10   |     |
| Beta Coefficient | β      |      |     | 3976 |     |
|                  |        |      |     |      |     |

| 1 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
| 1 |  |  |

Measurement Conditions / Comments

 $U_R = 5 V$ 

| Measurement Conditions / Comments |                                                                                                       |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| $P_{opt} = 10 \text{ mW},$        | ΔT = 20 K                                                                                             |  |  |  |
| $P_{opt} = 10 \text{ mW},$        | $\Delta T = 20 \text{ K}$                                                                             |  |  |  |
| $P_{opt} = 10 \text{ mW},$        | $\Delta T = 20 \text{ K}$                                                                             |  |  |  |
| $P_{opt} = 10 \text{ mW},$        | $\Delta \mathrm{T} = \mathrm{I} \ \mathrm{T}_{\mathrm{case}} - \mathrm{T}_{\mathrm{LD}} \ \mathrm{I}$ |  |  |  |

© All rights reserved by eagleyard Photonics GmbH. This target specification will be electronically administered and is subject to change without notice. Uncontrolled copy when printed. eagleyard Photonics GmbH Rudower Chaussee 29 fon +49. 30. 6392 4520 info@eagleyard.com

12489 Berlin GERMANY

fon +49. 30. 6392 4520 i fax +49. 30. 6392 4529

info@eagleyard.com www.eagleyard.com



# EYP-DBR-0633-00010-2000-TOC03-0005



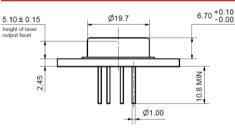
#### We focus on power.

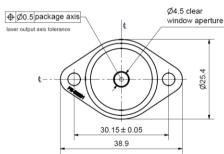
page 3 from 5

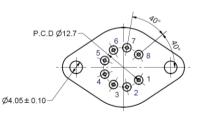
26.07.2013

DFB/DBR

**DISTRIBUTED BRAGG REFLECTOR LASER** GaAs Semiconductor Laser Diode with integrated grating structure


#### **Package Dimensions**


| Parameter                           | Symbol    | Unit            | min  | typ           | max |
|-------------------------------------|-----------|-----------------|------|---------------|-----|
| Height of Laser Output above Header | HL        | mm              |      | 5.1           |     |
| Housing Dimension                   | l x w x h | mm <sup>3</sup> | 38   | .9 x 25.4 x 9 | 9.3 |
| Pin Length                          | L         | mm              | 10.8 |               |     |

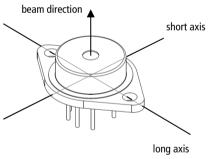

#### Package Pinout

| 1 | Thermoelectric Cooler (+) | 5 | Laser Diode (Anode)       |
|---|---------------------------|---|---------------------------|
| 2 | Thermistor                | 6 | Photo Diode (Anode)       |
| 3 | Thermistor                | 7 | Photo Diode (Cathode)     |
| 4 | Laser Diode (Cathode)     | 8 | Thernoelectric Cooler (-) |

#### Package Drawings








Measurement Conditions / Comments

Revision 0.51

bottom view

### **Polarization:** E field parallel to long axis of housing

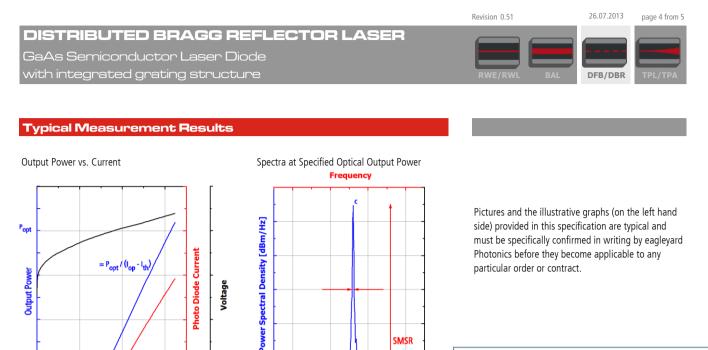


#### Z11-SPEC-TOC03-DFB-0000

© All rights reserved by eagleyard Photonics GmbH. This target specification will be electronically administered and is subject to change without notice. Uncontrolled copy when printed. eagleyard Photonics GmbH Rudower Chaussee 29 fon +49. 30. 6392 4520 info@eagleyard.com 12489 Berlin GERMANY fax +49. 30. 6392 4529 www.eagleyard.com



l<sub>th</sub>


Current

юр  $I_{\rm F}$ 

## EYP-DBR-0633-00010-2000-TOC03-0005



#### We focus on power.



Wavelength

SMSR

#### Ordering Information:



800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com

© All rights reserved by eagleyard Photonics GmbH. This target specification will be electronically administered and is subject to change without notice. Uncontrolled copy when printed. eagleyard Photonics GmbH Rudower Chaussee 29 fon +49. 30. 6392 4520 info@eagleyard.com 12489 Berlin GERMANY fax +49. 30. 6392 4529 www.eagleyard.com



## EYP-DBR-0633-00010-2000-TOC03-0005



#### We focus on power.

page 5 from 5

26.07.2013

DFB/DBR

Revision 0.51

## **DISTRIBUTED FEEDBACK LASER** GaAs Semiconductor Laser Diode

with integrated grating structure

#### Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The DBR diode type is known to be sensitive against optical feedback, so an optical isolator may be required in some cases. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.



## © All rights reserved by eagleyard Photonics GmbH. This target specification will be electronically administered and is subject to change without notice. Uncontrolled copy when printed. eagleyard Photonics GmbH Rudower Chaussee 29 fon +49. 30. 6392 4520 info@eagleyard.com 12489 Berlin GERMANY fax +49. 30. 6392 4529 www.eagleyard.com

