

We focus on power.

page 1 of 4

29.01.2014

BROAD AREA LASER

GaAs Semiconductor Laser Diode Single Emitter Structure

Revision 0.50

General Product Information

Product	Application
670 nm Broad Area Laser	Sensing
mounted on C-Mount	Medical

Absolute Maximum Ratings

	Symbol	Unit	min	typ	max
Storage Temperature	T_S	°C	-40		85
Operating Temperature at Case	T_{C}	°C	-20		50
Forward Current	I _F	Α			2.1
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	W			1.6

non condensing
non condensing
Stress in excess of one of the Absolute Maximum
Ratings can cause permanent damage to the device.

Recommended Operational Conditions

	Symbol	Unit	min	typ	max
Operating Temperature at Case	T _C	°C	10		25
Forward Current	I_{F}	А			2.0
Output Power	P_{opt}	W			1.5

Measurement Conditions / Comments
non condensing

Characteristics at T_{LD} = 25 °C at Begin Of Life

Symbol	Unit	min	typ	max
λ_{C}	nm	663	670	677
Δλ	nm		2	
dλ / dT	nm / K		0,3	
P _{opt}	W	1.5		
η_{d}	W/A		0.7	
I _{th}	А	0.3	0.4	0.65
I _{op}	А			2.0
V_{op}	V		2.2	
	$\begin{array}{c} \lambda_{\text{C}} \\ \Delta \lambda \\ \text{d} \lambda / \text{d} \text{T} \\ \text{P}_{\text{opt}} \\ \eta_{\text{d}} \\ \text{I}_{\text{th}} \\ \text{I}_{\text{op}} \end{array}$	$\begin{array}{ccc} \lambda_{C} & nm \\ \Delta\lambda & nm \\ d\lambda / dT & nm / K \\ P_{opt} & W \\ \eta_{d} & W / A \\ I_{th} & A \\ I_{op} & A \end{array}$	$\begin{array}{c cccc} \lambda_{C} & nm & 663 \\ \hline \Delta\lambda & nm \\ \hline d\lambda / dT & nm / K \\ \hline P_{opt} & W & 1.5 \\ \hline \eta_{d} & W / A \\ \hline I_{th} & A & 0.3 \\ \hline I_{op} & A \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Measurement Conditions / Comments
see images on page 4
total output measured with integrating sphere

We focus on power.

Revision 0.50

29.01.2014

page 2 of 4

BROAD AREA LASER

GaAs Semiconductor Laser Diode Single Emitter Structure

Characteristics a	tr _{amb} 25 Carbegin Or Life	cont a

Parameter	Symbol	Unit	min	typ	max
Stripe Width	W_s	μm		60	
Cavity Length	L	μm	1500		
Divergence parallel (FWHM)	$\Theta_{ }$	0	8		
Divergence perpendicular (FWHM)	Θ_{\perp}	0	30		
Spectral Mode (longitudinal)			Multi Mode		
Polarization				TE	

Maacuran	nent Conditions / Comments
ivieasureii	lent Conditions / Comments
Beam dive	rgence parallel to junction plane
Beam dive	rgence perpendicular to junction plane
Polarizatio	n parallel to junction plane

We focus on power.

29.01.2014

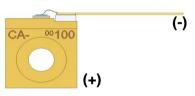
BROAD AREA LASER

GaAs Semiconductor Laser Diode Single Emitter Structure

Revision 0.50

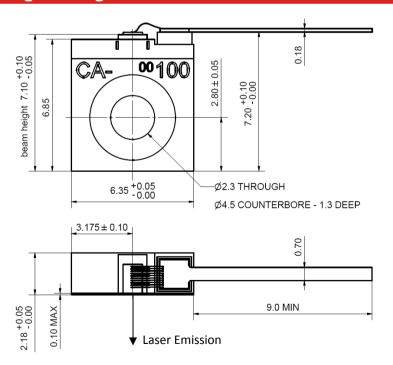
page 3 of 4

kage	one	\mathbf{o}	10
KEGE			ш


Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h _{EP}	mm	7.05	7.20	7.35
C-Mount Thickness	d	mm		2.18	

Measurement Conditions / Comments		

Package Pinout


Cathode (-)	Mounting Wire
Anode (+)	Housing

mounting wire

heat spreader

Package Drawings

We focus on power.

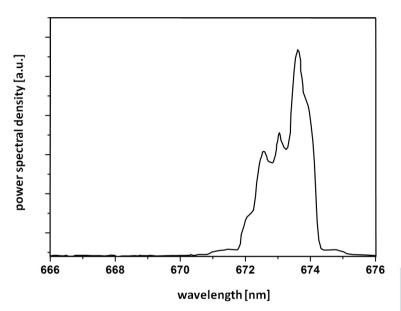
Revision 0.50

29.01.2014

page 4 of 4

BROAD AREA LASER

GaAs Semiconductor Laser Diode Single Emitter Structure



Typical Measurement Results

Spectrum

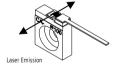
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The BAL diode type is known to be sensitive against thermal stress. Operating at moderate temperatures on proper heat sinks will contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.


Each laser diode will come with an individual test protocol verifying the parameters given in this document.

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282

@ All rights reserved by eagleyard Photonics GmbH. This target specification will be electronically administered and is subject to change without notice. Uncontrolled copy when printed.

